Biopolym. Cell. 2010; 26(4):327-347.
Дискусії
Біополімери і клітини у вимірі архітектури мікроценозів.
3. Мікроценоз, клітина, біополімери – це що? Це як?
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Проаналізовано загальноприйняті експериментальні дані, описані в літературі, щодо функціональних відмінностей між світом еукаріотів і прокаріотів за особливостями організації та функціонування їхнього генетичного матеріалу. Велика кількість і різноманіття каналів горизонтального перенесення генетичного матеріалу у прокаріотів з широкою міжвидовою реалізацією у поєднанні з особливостями фертильності, а також поява в процесі як звичайного росту, так і під дією різноманітних зовнішніх факторів утворень розміром, меншим за 0,2 мкм, дозволили сформулювати положення відносно особливого статусу у прокаріотів їхнього геному та розмитості самого поняття клітини. У цьому зв’язку постає питання, що ж із себе являють форми, які не ростуть за лабораторних умов і при цьому становлять переважну більшість у природних субстратах?
Keywords: геном прокаріотів, мікроценоз, горизонтальне перенесення, клітина прокаріотів
Повний текст: (PDF, російською)
References
[1]
Kordium V. A. Our shagreen leather is our problem. And we have to solve it K.: Logos, 2006 264 p.
[2]
Kordium V. A., Shylova S. P., Moshynets E. V., AdamchuckChala N. I., Irodov D. I., Andrienko V. I. Biopolymers and cells in dimension of microbial community architecture. 1. Fenomenology Biopolym. cell 2009 25, N 2:150– 166.
[3]
Kordium V. A., Moshynets E. V. Biopolymers and cells on the level of microbial architecture. 2. Parallel life, parallel but not life, nonparallel and not life, but what? What is life? Biopolym. cell 2009 25, N 5:403–423.
[4]
Baluska F., Volkmann D., Barlow P. W. Eukaryotic cells and their cell Bodies: cell theory revised Ann. Bot 2004 94, N 1:9–32.
[5]
Spector D. L. Nuclear domains. J. Cell Sci. 2001; 114, pt 16:2891–2893.
[6]
Conlan L. H., Stanger M. J., Ichiyanagi K., Belfort M. Localization, mobility and fidelity of retrotransposed Group II introns in rRNA genes Nucl. Acids Res 2005 33, N 16 P. 5262–5270.
[7]
Nakabachi A., Yamashita A., Toh H., Ishikawa H., Dunbar H. E., Moran N. A., Hattori M. The 160-kilobase genome of the bacterial endosymbiont Carsonella Science 2006 314, N 5797:267.
[8]
Gregory T. R. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma Biol. Rev 2001 76, N 1:65–101.
[9]
Nagl W. DNA redundancy and polyteny in higher plants. XV Int. Congr. Genet. (New Delhi, Dec. 12–21, 1983): Plenary Symp. Ses New Delhi etc.: Oxford and IBH Publ. Co., 1983:85–86.
[10]
Pizon V., Cuny G., Bernardi G. Nucleotide sequence organization in the very small genome of a tetraodontid fish, Arothron diadematus Eur. J. Biochem 1984 140, N 1:25–30.
[11]
Downie J. A., Young J. P. W. Genome sequencing. The ABC of symbiosis Nature 2001 412, N 6847:597–598.
[12]
Smalla K. Monitoring of microbial communities 5th Int. Symp. the Biosafety Results of Field Tests of Genetically Modified Plants and Microorganisms (Braunschweig, 6–10 Sep., 1998) Berlin-Dahlem, 2000:257–258.
[13]
Kalkus J., Reh M., Schlegel H. G. Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids J. Gen. Microbiol 1990 136, N 6:1145–1151.
[14]
Ovcharenko L. P., Kozyrovska N. O. Methagenomic analysis of environmental microorganisms K.: Logos, 2008 252 p.
[15]
Kalinina G. P. Development of microbial cells from the precellular matter K., 1954 473 p.
[16]
Timakov V. D., Kagan T. J. Biology of L-forms M.: Medgiz, 1961 235 p.
[17]
Prozorovsky S. V., Kats L. N., Kagan G. J. Bacterial L-forms (mechanism of formation, structure, pathology role) M.: Meditsina, 1981 240 p.
[18]
Khesin RB. Genome instability. Moscow, Nauka, 1984; 472 p.
[19]
Riley M., Serres M. H. Interim report on genomics of Escherichia coli Annu. Rev. Microbiol 2000 54:341–411.
[20]
Vojekova T. A. Conjugation plasmid transfer from Escherichia coli to different strains of Actinomycetales. Genetica. 1999; 35, N 12:1626–1633.
[21]
Heinemann J. A., Sprague G.(Jr.) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast Nature 1989 340, N 6230:205–209.
[22]
Gouka R. J., Gerk C., Hooykaas P. J. J., Bundock P., Musters W., Verrips C. T., de Groot M. J. A. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination Nat. Biotechnol 1999 17, N 6:598–601.
[23]
Lang A. S., Beatty J. T. The gene transfer agent of Rhodobacter capsulatus and «constitutive transduction» in prokaryotes Arch. Microbiol 2001 175, N 4:241–249.
[24]
Bale N. J., Day M. J., Fry J. C. Novel method for studying plasmid transfer in undisturbed river epilithon. Appl. Environ. Microbiol. 1988; 54, N 11:2756–2758.
[25]
Linton A. H. Plasmids in the environment. Schriftenr. Ver. Wasser-, Boden und Lufthyg 1988 78:197–224.
[26]
Bleakley B. H., Crawford D. L. Streptomyces. The effects of varying moisture and nutrient levels on the transfer of a conjugative plasmid between Streptomyces species in soil. Can. J. Microbiol 1989 35, N 5:544–549.
[27]
Shestakov S. V. Role of gorizontal gene transfere in evolution. A report. (www.bionet.nsc.ru/live/liveprint.php?f=doc lad&p=shestakov).
[28]
Paget E., Simonet P. On the trac of natural transformation in soil: Pap. 4th Symp. Bact. Genet. and Ecol. (Wageningen, 21–24 Nov., 1993). FEMS Microbiol. Ecol 1994 15, N 1–2:109–117.
[29]
Makarov A. V., Zaharov I. A. Big and small rebuildings in evolution of prokaryotic systems. Genetica. 2006; N 11 P. 1547–1557.
[30]
Kolchanov N. A., Suslov V. V., Shumny V. K. Molecular evolution of genetic systems. Paleontologichesky Zhur. 2003; N 6:58–71.
[31]
Day M. J., Bale M. J., Fry J. C. Plasmid transfer in a freshwater environment. Safety Assur. Environ. Introd. Genet. End. Orga: Proc. NATO Adv. Res. Workshop (Rome, June 6–10, 1987) Berlin, 1988:181–197.