Biopolym. Cell. 2010; 26(2):121-127.
Молекулярна Біомедицина
Оксидативний стрес, кінцеві продукти глікації та залишкове функціонування нирки на моделі щурів з унілатеральною обструкцією сечоводу: ефекти флогензиму та лосартану
- Лікарня Святої Єлизавети і Варвари
5, Мауерштрабе, Галле / Заале, Німеччина, 06110 - Альфа Медікал
49, Влцие хрдло, Словаччина, 81207 - Дитяча лікарня
1, Лімбова, Братислава, Словаччина, 83340 - Святої Єлизавети університету охорони здоров'я і соціальних наук
1, Наместе, Майя, Братислава, Словаччина, 81100 - Університет Вюрцбурга
6, Обердюрбахер штрасе, Вюрцбург, Німеччина, 97080 - Словацький медичний університет
вул. Лімбова 12, Братислава, Республіка Словакія, 83303
Abstract
Оксидативний стрес відіграє значну роль у патогенезі обструкції сечоводу. Мета роботи полягала у вивченні параметрів оксидативного статусу, оцінюванні рівня кінцевих продуктів глікації і функціонування контралатеральної нирки на моделі щурів з унілатеральною обструкцією сечоводу (УОС). Методи. На моделі УОС досліджували ефекти флогензиму (12 мг в день орально) і лосартану (20 мг/л у питній воді), а також їхньої комбінації. Результати. У щурів з УОС, які отримували плацебо, рівень накопичення кінцевих продуктів глікації та малондіальдегіду виявився вищим, ніж у несправжньооперованих контрольних щурів. Функціонування контралатеральної нирки незначно погіршилося, концентрація колагену і співвідношення вмісту білок/дезоксирибонуклеїнова кислота (P/ DNA) у клубочку нирки підвищені. Обробка досліджуваними лікарськими засобами запобігала збільшенню вмісту колагену, зростанню показника співвідношення P/DNA та покращувала функціонування колатеральної нирки. Флогензим сприяв підвищенню рівня перекисного окиснення ліпідів та кінцевих продуктів глікації. Висновки. У моделі УОС систематичне збільшення оксидативного стресу може відігравати важливу роль у розвитку тубулоінтерстиційного фіброзу і порушенні функціонування контралатеральної нирки. Супресія оксидативного стресу та блокування рецептора ангіотензину-1 можуть послаблювати прогресію обструктивної уропатії.
Keywords: обструкція сечоводу, оксидативний стрес, малондіальдегід, колаген
Повний текст: (PDF, англійською)
References
[1]
Klahr S., Purkerson M. L. The pathophysiology of obstructive nephropathy: The role of vasoactive compounds in the hemodynamic and structural abnormalities of the obstructed kidney Am. J. Kidney Dis 1994 23, N 2 P. 219–223.
[2]
Diamond J. R., Kees-Folts D., Ding G., Frye J. E., Restrepo N. C. Macrophages, monocyte chemoattractant peptide-1, and TGF-b1 in experimental hydronephrosis Am. J. Physiol 1994 266, N 6 P. 926–933.
[3]
Kaneto H., Morrissey J., Klahr S. Increased expression of TGF-b1 mRNA in the obstructed kidney of the rats with unilateral ureteral ligation Kidney Int 1993 44, N 2 P. 313–321.
[4]
Klahr S., Morrissey J. J. The role of vasoactive compounds, growth factors and cytokines in progression of renal disease Kidney Int 2000 75, Suppl P. S7–14.
[5]
Kawada N., Moriyama T., Ando A., Fukunaga M., Miyata T., Kurokawa K., Imai E., Hori M. Increased oxidative stress in mouse kidneys with unilateral ureteral obstruction Kidney Int 1999 56, N 3 P.1004–1013.
[6]
Ricardo S. D., Ding G., Eufemio M., Diamond J. R. Antioxidant expression in experimental hydronephrosis: role of mechanical stretch and growth factors Am. J. Physiol 1997 272, N 6 P. F789–798.
[7]
Gugliucci A., Bendayan M. Renal fate of circulating advanced glycated end products (AGE): evidence for reabsorption and catabolism of AGE-peptides by renal proximal tubular cells Diabetologia 1996 39, N 2 P. 149–160.
[8]
Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure Kidney Int 1997 51, N 4 P. 1170–1181.
[9]
Yan S. D., Schmidt A. M., Anderson G. M., Zhang J., Brett J., Zou Y. S., Pinsky D., Stern D. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins J. Biol. Chem 1994 269, N 13 P. 9889–9897.
[10]
Fujita M., Okuda H., Tsukamoto O., Asano Y., Hirata Y.L., Kim J., Miyatsuka T., Takashima S., Minamino T., Tomoike H., Kitakaze M. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end products in human endothelial cells. Arterioscler. Thromb. Vasc. Biol 2006 26, N 10 P. e138–142.
[11]
Miyata T., Van Ypersele de Strihou C., Ueda Y., Ichimori K., Inagi R., Onogi H., Ishikawa N., Nangaku M., Kurokawa K. Angiotensin II receptor antagonists and angiotensinconverting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms J. Am. Soc. Nephrol 2002 13, N 10 P. 2478–2487.
[12]
Xiang G., Schinzel R., Munch G., Simm A., Sebekova K., Wanner C., Heidland A. Losartan suppresses the AGE-induced expression of TGF-b1 in human tubule and LLC-PK1 cell lines J. Am. Soc. Nephrol 1999 10, N 9 P. 692A.
[13]
Sebekova K., Schinzel R., Munch G., Krivosikova Z., Dzurik R., Heidland A. Advanced glycation end product levels in subtotally nephrectomized rats: beneficial effects of angiotensin II receptor 1 antagonist losartan Mineral. Electrol. Metab 1999 25, N 4–6 P. 380–383.
[14]
Forbes J. M., Thomas M. C., Thorpe S. R., Alderson N. L., Cooper M. E. The effects of valsartan on the accumulation of circulating and renal advanced glycation end products in experimental diabetes Kidney Int 2004 92 S105–S107.
[15]
Xiang G., Schinzel R., Simm A., Sebekova K., Heidland A. Advanced glycated end products impair protein turnover in LLC-PK1 cells: amelioration by trypsin Kidney Int 2001 59, Suppl P. S53–S57.
[16]
Xiang G., Schinzel R., Simm A., Munch G., Sebekova K., Kasper M., Niwa T., Schmitz C., Heidland A. Advanced glycated end products (AGEs)-induced expression of TGF-b1 is suppressed by a protease in the tubule cell line LLC-PK1 Nephrol. Dial. Transplant 2001 16, N 8 P. 1562–1569.
[17]
Sebekova K., Dammrich J., Fierlbeck W., Krivosikova Z., Paczek L., Heidland A. Effects of chronic therapy with proteolytic enzymes on hypertension-induced renal injury in the model of Goldblatt hypertension Am. J. Nephrol 1998 18, N 6 P. 570–576.
[18]
Sebekova K., Dammrich J., Krivosikova Z., Heidland A. The effects of oral protease administration in the rat remnant kidney model Res. Exp. Med 1999 199, N 3 P. 177–188.
[19]
Wong S. H., Knight J. A., Hopfer S. M., Zaharia O., Leack C. N., Jr., Sunderman F. W., Jr. Lipoperoxides in plasma as measured by liquid chromatographic separation of malondialdehyde-thiobarbituric acid adduct Clin. Chem 1987 33, N 2 P. 214–220.
[20]
Tsuchida M., Miura T., Mizutani K., Aibara K. Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation Biochim. Biophys. Acta 1985 834, N 2 P. 196–204.
[21]
Munch G., Keis R., Wessels A., Riederer P., Bahner U., Heidland A., Niwa T., Lemke H. D., Schinzel R. Determination of advanced glycation end products in serum by fluorescence spectroscopy and competitive ELISA Eur. J. Clin. Chem. Clin. Biochem 1997 35, N 9 P. 669–677.
[22]
Spiro R.G. Studies on the renal glomerular basement membrane: preparation and chemical composition J. Biol. Chem 1967 242, N 8 P. 1915–1919.
[23]
Harris D.A. Fluorometric assay for DNA with Hoechst 33258 Spectrophotometry and spectrofluorometryn / Eds D. A. Harris, C. L. Bashford Washington: IRL Press, 1987 P. 64–65.
[24]
Smith P. K., Krohn R. J., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinochonicinic acid Anal. Biochem 1985 50, N 1 P. 76– 85.
[25]
Sebekova K., Schinzel R., Ling H., Simm A., Xiang G., Gekle M., Munch G., Vamvakas S., Heidland A. Advanced glycated albumin impairs protein degradation in the proximal tubules cell line LLC-PK1 Cell. Mol. Biol 1998 44, N 7 P. 1051–1060.
[26]
Brownlee M. Advanced protein glycosylation in diabetes and ageing Annu. Rev. Med 1995 46 P. 223–224.
[27]
Ishidoya S., Morrisey J., McCracken R., Klahr S. Angiotensin II receptor antagonist ameliorates renal tubulointerstitial fibrosis caused by unilateral ureteral obstruction Kidney Int 1995 47, N 5 P. 1285–1294.
[28]
Schupp N., Schinzel R., Heidland A., Stopper H. Genotoxicity of advanced glycation end products: involvement of oxidative stress and of angiotensin II type 1 receptors Ann. N. Y. Acad. Sci 2005 1043 P. 685–695.
[29]
Khaper N., Singal P. K. Modulation of oxidative by a selective inhibition of angiotensin II type 1 receptors in MI rats J. Am. Coll. Cardiol 2001 37, N P. 1461–1466.
[30]
Fan Q., Liao J., Kobayashi M., Yamashita M., Gu L., Gohda T., Suzuki Y., Wang L. N., Horikoshi S., Tomino Y. Candesartan reduced advanced glycation end-products accumulation and diminished nitro-oxidative stress in type 2 diabetic KK/Ta mice Nephrol. Dial. Transplant–2004 19, N 12 P. 3012–3020.
[31]
Kislinger T., Fu C., Huber B., Qu W., Taguchi A., Du Yan S., Hofmann M., Yan S. F., Pischetsrieder M., Stern D., Schmidt A. M. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression J. Biol. Chem 1999 274, N 44 P. 31740–31749.
[32]
Nagashawa T., Tabata N., Ito Y., Nishizawa N., Aiba Y., Kitts D. D. Inhibition of glycation reaction in tissue protein incubations by water-soluble rutin derivative Mol. Cell. Biochem 2003 249, N 1–2 P. 3–10.