Biopolym. Cell. 2009; 25(5):384-389.
Структура та функції біополімерів
КоА Синтаза впливає на незалежний від контактів з позаклітинним матриксом ріст та виживання клітин ссавців за умов in vitro
1Бреус О. С., 1Немазаний І. О., 1, 2Гут І. Т., 1Філоненко В. В., 1Панасюк Г. Г.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680
  2. Відділ структурної та молекулярної біології, Університетський коледж Лондона
    вул. Гавер, Лондон, WC1E 6BT, Велика Британія

Abstract

Мета. Оцінити вплив рівня експресії, каталітичної активності та субклітинної локалізації КоА синтази на незалежний від контактів із позаклітинним матриксом ріст та виживання клітин у культурі in vitro. Методи. Вивчали здатність клітин до формування колоній в напіврідкій агарозі та виживання за відсутності ростових факторів. Створено стабільні клітинні лінії на основі клітин HEK293, що надекспресують КоА синтазу дикого типу, а також мутантні – каталітично неактивну форму, або КоА синтазу із делетованою послідовністю, що відповідає за асоціацію з мітохондріями. Досліджували також ефекти опосередкованого міРНК зниження ендогенного рівня КоА синтази на раковий фенотип клітин HepG2. Результати. Зміни в експресії КоА синтази впливають на незалежний від прикріплення ріст і виживання клітин ссавців. Каталітична активність КоА синтази, а також асоціація її з мітохондріями виявилися необхідними для опосередкування спостережених ефектів. Висновки. Представлені дані вказують на те, що КоА синтаза чинить позитивний вплив на сигнальні шляхи клітини, та виявляють невідомий раніше функціональний зв’язок між передаванням сигналів в клітині та метаболізмом.
Keywords: КоА синтаза, коензим А, незалежний від прикріплення ріст, життєздатність клітин.

References

[1] Zhyvoloup A., Nemazanyy I., Babich A., Panasyuk G., Pobigailo N., Vudmaska M., Naidenov V., Kukharenko O., Palchevskii S., Savinska L., Ovcharenko G., Verdier F., Valovka T., Fenton T., Rebholz H., Wang M.L., Shepherd P., Matsuka G., Filonenko V., Gout I. T. Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis J. Biol. Chem 2002 277, N 25:22107–22110.
[2] Daugherty M., Polanuyer B., Farrell M., Scholle M., Lykidis A., de Crecy-Lagard V., Osterman A. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics J. Biol. Chem 2002 2277, N 24:21431–2139.
[3] Abiko Y. Metabolism of coenzyme A In metabolic pathways. Ed. D. Greenberg New York: Acad. press, 1975:25–50.
[4] Leonardi R., Zhang Y. M., Rock C. O., Jackowski S. Coenzyme A: back in action Progr. Lipid. Res 2005 44, N 2– 3:125–153.
[5] Black P. N., Faergeman N. J., DiRusso C. C. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals. J Nutr. 2000;130(2S Suppl):305S-309S.
[6] Takahashi H., McCaffery J. M., Irizarry R. A., Boeke J. D. Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription Mol. Cell 2006 23, N 2:207–217.
[7] Resh M. D. Regulation of cellular signalling by fatty acid acylation and prenylation of signal transduction proteins Cell. Signal 1996 8, N 6:403–412.
[8] Linder M. E., Deschenes, R. J. Palmitoylation: policing protein stability and traffic Nat. Rev. Mol. Cell. Biol 2007 8, N 1 P.874–884.
[9] Pfanner N., Orci L., Glick B. S., Amherdt M., Arden S. R., Malhotra V., Rothman J. E. Fatty acyl-coenzyme A is required for budding of transport vesicles from Golgi cisternae Cell 1989 59, N 1:95–102.
[10] Bosveld F., Rana A., van der Wouden P. E., Lemstra W., Ritsema M., Kampinga H. H., Sibon O. C. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system Hum. Mol. Genet 2008 17, N 13:2058–2069.
[11] Nemazanyy I., Panasyuk G., Zhyvoloup A., Panayotou G., Gout I. T., Filonenko V. V. Specific interaction between S6K1 and CoA Synthase: a potential link between the mTOR/S6K pathway, CoA biosynthesis and energy metabolism FEBS Lett 2004 578, N 3:357–362.
[12] Breus O., Panasyuk G., Gout I. T., Filonenko V., Nemazanyy I. CoA Synthase is in complex with p85alphaPI3K and affects PI3K signaling pathway Biochem. and Biophys. Res. Communs 2009 385, N 4:581–585.
[13] Zhyvoloup A., Nemazanyy I., Panasyuk G., Valovka T., Fenton T., Rebholz H., Wang M. L., Foxon R., Lyzogubov V., Usenko V., Kyyamova R., Gorbenko O., Matsuka G., Filonenko V., Gout I. T. Subcellular localization and regulation of coenzyme A synthase J. Biol. Chem 2003 278, N 50:50316–50321.
[14] Frisch S. M., Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis J. Cell. Biol 1994 124, N 4:619–626.
[15] Chiarugi P. From anchorage dependent proliferation to survival: lessons from redox Signalling IUBMB Life 2008 60:301–307.
[16] Nakamura K., Sakaue H., Nishizawa A., Matsuki Y., Gomi H., Watanabe E., Hiramatsua R., Tamamori-Adachi M., Kitajima S., Noda T., Ogawa W., Kasuga M. PDK1 regulates cell proliferation and cell cycle progression through control of cyclin D1 and p27Kip1 expression J. Biol. Chem 2008 283, N 25:17702–17711.
[17] Vander Heiden M. G., Plas D. R., Rathmell J. C., Fox C. J., Harris M. H., Thompson C. B. Growth factors can influence cell growth and survival through effects on glucose metabolism Mol. Cell. Biol 2001 21, N 17:5899– 5912.
[18] Duronio V. The life of a cell: apoptosis regulation by the PI3K/PKB pathway Biochem. J 2008 415:333–344.
[19] Yuan T. L., Cantley L. C. PI3K pathway alterations in cancer: variations on a theme Oncogene–2008 27, N 41:5497– 5510.
[20] Veitch D. P., Gilham D., Cornell R. B. The role of histidine residues in the HXGH site of CTP: phosphocholine cytidylyltransferase in CTP binding and catalysis Eur. J. Biochem 1998 255, N 1:227–234.
[21] Christofk H. R., Vander Heiden M. G., Wu N., Asara J. M., Cantley L. C. Pyruvate kinase M2 is a phosphotyrosinebinding protein Nature 2008 452, N 7184:181–186.
[22] Christofk H. R., Vander Heiden M. G., Harris M. H., Ramanathan A., Gerszten R. E., Wei R., Fleming M. D., Schreiber S. L., Cantley L. C. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth Nature. 2008 452, N 7184:230–233.
[23] Swinnen J. V., Brusselmans K., Verhoeven G. Increased lipogenesis in cancer cells: new players, novel targets Curr. Opin. Clin. Nutr. Metab. Care 2006 9, N 4:358–365.
[24] Menendez J. A., Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis Nat. Rev. Cancer 2007 7, N 10:763–777.
[25] Yoon S., Lee M. Y., Park S. W., Moon J. S., Koh Y. K., Ahn Y. H., Park B. W., Kim K. S. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells J. Biol. Chem 2007 282, N 36:26122–26131.
[26] Brunet J., Vazquez-Martin A., Colomer R., Graca-Suarez B., Martin-Castillo B., Menendez J. A. BRCA1 and acetyl-CoA carboxylase: the metabolic syndrome of breast cancer Mol. Carcinog 2008 47, N 2:157–163.
[27] De Schrijver E., Brusselmans K., Heyns W., Verhoeven, G., Swinnen J. V. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 2003; 63(13):3799–3804.
[28] Brusselmans K., De Schrijver E., Verhoeven G., Swinnen J. V. RNA interference-mediated silencing of the acetyl-CoAcarboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells Cancer Res 2005 65, N 15:6719–6725.
[29] Wang H. Q., Altomare D. A., Skele K. L., Poulikakos P. I., Kuhajda F. P., Di Cristofano A., Testa J. R. Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells Oncogene 2005 24:3574–3582.
[30] Vazquez-Martin A., Colomer R., Brunet J., Lupu R., Menendez J. A. Overexpression of fatty acid synthase gene activates HER1/HER2 tyrosine kinase receptors in human breast epithelial cells Cell Prolif 2008 41, N 1:59–85.