Biopolym. Cell. 2008; 24(1):35-40.
Клітинна біологія
Субклітинна локалізація S6K1 і S6K2 форм рибосомної
протеїнкінази S6 у первинній моношаровій культурі
тиреоцитів щурів
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Імунохімічно визначено субклітинну локалізацію S6K1 і S6K2 у тканині та моношаровій культурі щитовидної залози щурів. Встановлено, що в тканині щитовидної залози S6K1 і S6K2 локалізуються переважно в цитоплазмі клітин. При розпластуванні фолікулів з’являлася позитивна реакція в ядрах тиреоцитів. Такий перерозподіл не пов’язаний прямо з появою проліферуючих Ki-67 позитивних клітин. У той же час відмічено кореляцію між появою S6K1, S6K2 позитивних ядер і зменшенням вмісту тиреоглобулину у культивованх клітинах. Таким чином, отримані результати свідчать про те, що зниження функціональної активності тиреоцитів внаслідок втрати фолікулярної організації супроводжується зміною субклітинної локалізації S6K1 і S6K2.
Keywords: рибосомна протеїнкіназа S6, тиреоцити, первинна культура
Повний текст: (PDF, англійською)
References
[1]
Manning BD. Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol. 2004;167(3):399-403.
[2]
Ringel MD, Hayre N, Saito J, Saunier B, Schuppert F, Burch H, Bernet V, Burman KD, Kohn LD, Saji M. Overexpression and overactivation of Akt in thyroid carcinoma. Cancer Res. 2001;61(16):6105-11.
[3]
Suh JM, Song JH, Kim DW, Kim H, Chung HK, Hwang JH, Kim JM, Hwang ES, Chung J, Han JH, Cho BY, Ro HK, Shong M. Regulation of the phosphatidylinositol 3-kinase, Akt/protein kinase B, FRAP/mammalian target of rapamycin, and ribosomal S6 kinase 1 signaling pathways by thyroid-stimulating hormone (TSH) and stimulating type TSH receptor antibodies in the thyroid gland. J Biol Chem. 2003;278(24):21960-71.
[4]
Coulonval K, Vandeput F, Stein RC, Kozma SC, Lamy F, Dumont JE. Phosphatidylinositol 3-kinase, protein kinase B and ribosomal S6 kinases in the stimulation of thyroid epithelial cell proliferation by cAMP and growth factors in the presence of insulin. Biochem J. 2000;348 Pt 2:351-8.
[5]
Medina DL, Santisteban P. Thyrotropin-dependent proliferation of in vitro rat thyroid cell systems. Eur J Endocrinol. 2000;143(2):161-78.
[6]
Valovka T, Verdier F, Cramer R, Zhyvoloup A, Fenton T, Rebholz H, Wang ML, Gzhegotsky M, Lutsyk A, Matsuka G, Filonenko V, Wang L, Proud CG, Parker PJ, Gout IT. Protein kinase C phosphorylates ribosomal protein S6 kinase betaII and regulates its subcellular localization. Mol Cell Biol. 2003;23(3):852-63.
[7]
Groussin L, Massias JF, Bertagna X, Bertherat J. Loss of expression of the ubiquitous transcription factor cAMP response element-binding protein (CREB) and compensatory overexpression of the activator CREMtau in the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab. 2000;85(1):345-54.
[8]
de Groot RP, Ballou LM, Sassone-Corsi P. Positive regulation of the cAMP-responsive activator CREM by the p70 S6 kinase: an alternative route to mitogen-induced gene expression. Cell. 1994;79(1):81-91.
[9]
Richardson CJ, Broenstrup M, Fingar DC, Julich K, Ballif BA, Gygi S, Blenis J. SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol. 2004;14(17):1540-9.
[10]
Ruvinsky I, Meyuhas O. Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci. 2006;31(6):342-8.
[11]
Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev. 2001;22(5):631-56.
[12]
Vinals F, Chambard JC, Pouyssegur J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation. J Biol Chem. 1999;274(38):26776-82.
[13]
Kanda S, Miyata Y, Mochizuki Y, Matsuyama T, Kanetake H. Angiopoietin 1 is mitogenic for cultured endothelial cells. Cancer Res. 2005;65(15):6820-7.
[14]
Savinska LO, Lyzogubov VV, Usenko VS, Ovcharenko GV, Gorbenko ON, Rodnin MV, Vudmaska MI, Pogribniy PV, Kyyamova RG, Panasyuk GG, Nemazanyy IO, Malets MS, Palchevskyy SS, Gout IT, Filonenko VV. Immunohistochemical analysis of S6K1 and S6K2 expression in human breast tumors. Eksp Onkol. 2004;26(1):24-30.
[15]
Westermark K, Nilsson M, Karlsson FA. Effects of interleukin 1 alpha on porcine thyroid follicles in suspension culture. Acta Endocrinol (Copenh). 1990;122(4):505-12.
[16]
Goto K, Sasano N, Matoba N. Follicular reconstruction and hormone production by human adenomatous goiter cells in culture. Tohoku J Exp Med. 1982;136(3):285-90.
[17]
Bomash N.Y. Morphological diagnosis of thyroid diseases. Moscow: Medicina 1981
[18]
Westermark B, Heldin NE, Westermark K. Structural and functional properties of thyroid follicle cells in culture. Acta Physiol Scand Suppl. 1990;592:15-24.
[20]
Massart C, Gibassier J, Genetet N, Raoul ML, Baron M, Le Gall F, Lucas C. Effect of lymphocytes on hormonal secretion by autologous thyrocytes cultured in monolayers. J Mol Endocrinol. 1996;17(3):185-95.
[21]
Williams DW, Wynford-Thomas D, Williams ED. Control of human thyroid follicular cell proliferation in suspension and monolayer culture. Mol Cell Endocrinol. 1987;51(1-2):33-40.
[22]
Toda S, Yonemitsu N, Hikichi Y, Sugihara H, Koike N. Differentiation of human thyroid follicle cells from normal subjects and Basedow's disease in three-dimensional collagen gel culture. Pathol Res Pract. 1992;188(7):874-82.
[23]
Khoruzhenko A.I. New approaches for thyrocyte cultivation in vitro with retention of their follicular organization. Experimental Oncology, 2002; 24 (2):99-104.
[24]
Mauchamp J, Mirrione A, Alquier C, Andr? F. Follicle-like structure and polarized monolayer: role of the extracellular matrix on thyroid cell organization in primary culture. Biol Cell. 1998;90(5):369-80.
[25]
Dickson JG, Hovsepian S, Fayet G, Lissitzky S. Follicle formation and iodide metabolism in cultures of human thyroid cells. J Endocrinol. 1981;90(1):113-24.
[26]
Gerard AC, Denef JF, Colin IM, van den Hove MF. Evidence for processing of compact insoluble thyroglobulin globules in relation with follicular cell functional activity in the human and the mouse thyroid. Eur J Endocrinol. 2004;150(1):73-80.
[27]
Antoniak HL, Babych NO, Solohub LI, Snityns'kyi VV. Role of iodothyronine-deiodinase in thyroid hormone mechanisms in animal and human cells. Ukr Biokhim Zh. 2002;74(1):5-18.
[28]
Becks GP, Buckingham DK, Wang JF, Phillips ID, Hill DJ. Regulation of thyroid hormone synthesis in cultured ovine thyroid follicles. Endocrinology. 1992;130(5):2789-94.
[29]
Lyzogubov V.V., Usenko V.S., Khojaenko Yu.S., Lytvyn D.I., Soldatkina M.A., Rodnin N.V., Filonenko V.V., Pogribniy P.V. Immunohistochemical analysis of p70S6 kinase α in human thyroid tissue upon pathology. Experimental Oncology, 2003; 25 (4), pp. 304-306.
[30]
Tepperman J, Tepperman HM. Metabolic and endocrine physiology: an introductory text. Year Book Medical Publishers, 1987 369 p.
[31]
Bauer MF, Herzog V. Mini organ culture of thyroid tissue: a new technique for maintaining the structural and functional integrity of thyroid tissue in vitro. Lab Invest. 1988;59(2):281-91.
[32]
Chambard M, Verrier B, Gabrion J, Mauchamp J. Polarization of thyroid cells in culture: evidence for the basolateral localization of the iodide "pump" and of the thyroid-stimulating hormone receptor-adenyl cyclase complex. J Cell Biol. 1983;96(4):1172-7.
[33]
Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, Gout IT. Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J Biol Chem. 2006;281(42):31188-201.
[34]
Zhou HY, Wong AS. Activation of p70S6K induces expression of matrix metalloproteinase 9 associated with hepatocyte growth factor-mediated invasion in human ovarian cancer cells. Endocrinology. 2006;147(5):2557-66.
[35]
Berven LA, Willard FS, Crouch MF. Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell migration. Exp Cell Res. 2004;296(2):183-95.
[36]
Kanayasu-Toyoda T, Yamaguchi T, Oshizawa T, Kogi M, Uchida E, Hayakawa T. Role of the p70 S6 kinase cascade in neutrophilic differentiation and proliferation of HL-60 cells-a study of transferrin receptor-positive and -negative cells obtained from dimethyl sulfoxide- or retinoic acid-treated HL-60 cells. Arch Biochem Biophys. 2002;405(1):21-31.