Biopolym. Cell. 2007; 23(4):347-362.
Молекулярна Біомедицина
Характеристика генів зі зниженою
експресією у гліомах людини – потенційних пухлиносупресорних генів
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680 - Інститут нейрохірургії ім. академіка А. П. Ромоданова АМН України
вул. Мануїльського, 32, Київ, Україна, 04050
Abstract
У результаті порівняння профілів експресії генів у нормальному головному мозку і гліобластомі з використанням бази даних серійногo аналізу генної експресії (Serial Analysis of Gene Expression, SAGE) виявлено 129 генів з більш ніж п’ятиразовою зміною рівня експресії (P 0,05) у гліобластомі, з яких 85 генів – зі зниженою експресією. У дифузній та анапластичній астроцитомах кількість генів із зниженою в п’ять разів експресією менша. Лише для дев’яти генів п’ятиразове зниження експресії відбувається в дифузних астроцитомах і виявляється приблизно на такому ж рівні в анапластичних астроцитомах і в гліобластомах. Для переважної більшості інактивованих генів рівень експресії знижується в дифузних астроцитомах і послідовно зменшується на подальших стадіях злоякісної прогресії астроцитом, причому в гліобластомах – найзлоякіснішому прояві гліальних пухлин – експресія деяких генів дуже низька або зовсім відсутня. Нозерн-гібридизація і ЗТ-ПЛР (зворотна транскрипція–полімеразна ланцюгова реакція) підтвердили знижену експресію в гліобластомах довільно відібраних генів. Деякі описані в цій роботі гени можуть кодувати пухлинні супресори і їхня зниженa експресія, очевидно, відіграє важливу роль в ініціації і прогресії гліом людини.
Keywords: гліома, астроцитома, гліобластома, знижена експресія генів, потенційні пухлиносупресорні гени
Повний текст: (PDF, українською) (PDF, англійською)
References
[1]
Loging WT, Lal A, Siu IM, Loney TL, Wikstrand CJ, Marra MA, Prange C, Bigner DD, Strausberg RL, Riggins GJ. Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res. 2000;10(9):1393-402.
[2]
Kavsan V, Shostak K, Dmitrenko V, Zozulya Y, Rozumenko V, Demotes-Mainard J. Characterization of genes with increased expression in human glioblastomas. Tsitol Genet. 2005;39(6):37-49.
[3]
Dmytrenko V. V., Boyko O. I., Shostak C. O., Symyrenko O. E., Bukreyeva T. V., Rozumenko V. D., Malysheva T. A., Shamaev M. I., Zozulya Y. P., Kavsan V. M. Overexpression of genes at different stages of astrocytic glioma development. Biopolym. Cell. 2006; 22(1):38-48
[4]
Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156-9.
[5]
Rae FK, Stephenson SA, Nicol DL, Clements JA. Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int J Cancer. 2000;88(5):726-32.
[6]
Kavsan V, Shostak K, Dmitrenko V, Chausovskiy T, Zozulya Y, Demotes-Mainard J. Peculiarities of molecular events in human glial tumors revealed by serial analysis of gene expression (SAGE). Exp Oncol. 2004;26(3):196-204.
[7]
Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ. A public database for gene expression in human cancers. Cancer Res. 1999;59(21):5403-7.
[8]
Markert JM, Fuller CM, Gillespie GY, Bubien JK, McLean LA, Hong RL, Lee K, Gullans SR, Mapstone TB, Benos DJ. Differential gene expression profiling in human brain tumors. Physiol Genomics. 2001;5(1):21-33.
[9]
Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, Sorokin LM, Ljubimov AV, Black KL. Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001;61(14):5601-10.
[10]
Ryffel GU, McCarthy BJ. Complexity of cytoplasmic RNA in different mouse tissues measured by hybridization of polyadenylated RNA to complementary DNA. Biochemistry. 1975;14(7):1379-85.
[11]
Croizat B, Berthelot F, Felsani A, Gros F. Complexity of polysomal polyadenylated RNA in mouse whole brain and cortex. FEBS Lett. 1979;103(1):138-43.
[12]
Ekstrand A. J., Longo N., Hamid M. L., Olson J. J., Liu L., Collin s V. P., Jame s C. D . Functional characterizati on of an EG F receptor with a truncated extracellular domain expressed in glioblastomas with EG FR gene amplification. Oncogene. 1994. 9.:2313–2320.
[13]
Hansen TV, Nielsen FC. Regulation of neuronal cholecystokinin gene transcription. Scand J Clin Lab Invest Suppl. 2001;234:61-7. Review.
[14]
Camby I., Salmon I., Danguy A., Pasteels J. L., Brotchi J., Martine z J., Kis s R . Influence of gastr in on human astrocytic tum or c ell proliferation. J. Nat. Cancer Inst. 1996. 88:594–600.
[15]
Lefranc F, Chaboteaux C, Belot N, Brotchi J, Salmon I, Kiss R. Determination of RNA expression for cholecystokinin/gastrin receptors (CCKA, CCKB and CCKC) in human tumors of the central and peripheral nervous system. Int J Oncol. 2003;22(1):213-9.
[16]
Allen JM, Hoyle NR, Yeats JC, Ghatei MA, Thomas DG, Bloom SR. Neuropeptides in neurological tumours. J Neurooncol. 1985;3(3):197-202.
[17]
Przedborski S, Goldman S, Schiffmann SN, Vierendeels G, Depierreux M, Levivier M, Hildebrand J, Vanderhaeghen JJ. Neuropeptide Y, somatostatin, and cholecystokinin neurone preservation in anaplastic astrocytomas. Acta Neuropathol. 1988;76(5):507-10.
[18]
Lopes MB, Altermatt HJ, Scheithauer BW, Shepherd CW, VandenBerg SR. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. 1996;91(4):368-75.
[19]
*Kaufmann R., Schoneberg T., Lindschau C., Haller H., Ott T. Cholecystokinin induced signalin ginrat glioma C6 cells. Neuropeptides. 1995. 29:251–256.
[20]
Kaufmann R, Schafberg H, Zieger M, Henklein P, Nowak G. Protein kinase C is involved in cholecystokinin octapeptide-induced proliferative action in rat glioma C6 cells. Neuropeptides. 1998;32(2):185-9.
[21]
Hafner C., Schmitz G., Meyer S., Bataille F., Hau P., Langmann T., Dietmaie r W., Landthale r M., Vog t T. Differential gene expression of E ph receptors and ephrins in benign human tissues and cancers. Clin. Chem. 2004. 50:490–499.
[22]
Nakada M, Niska JA, Tran NL, McDonough WS, Berens ME. EphB2/R-Ras signaling regulates glioma cell adhesion, growth, and invasion. Am J Pathol. 2005;167(2):565-76.
[23]
Fox BP, Tabone CJ, Kandpal RP. Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006;342(4):1263-72.
[24]
Fox BP, Kandpal RP. Transcriptional silencing of EphB6 receptor tyrosine kinase in invasive breast carcinoma cells and detection of methylated promoter by methylation specific PCR. Biochem Biophys Res Commun. 2006;340(1):268-76.
[25]
Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M, Vogt T. Loss of EphB6 expression in metastatic melanoma. Int J Oncol. 2003;23(6):1553-9.
[26]
Tang XX, Robinson ME, Riceberg JS, Kim DY, Kung B, Titus TB, Hayashi S, Flake AW, Carpentieri D, Ikegaki N. Favorable neuroblastoma genes and molecular therapeutics of neuroblastoma. Clin Cancer Res. 2004;10(17):5837-44.
[27]
Ren Y., Chan H. M., Fan J., Xie Y., Chen Y. X., L i W., Jian g G. P., L iu Q., Meinhar dt A., Ta m. P.K Inhibition of tumor growth and metastasis in vitro and in vivo by targeting macrophage migration inhibitory factor in human neuroblastoma. Oncogene. 2006. 25:3501–3508.
[28]
Prichard L, Deloulme JC, Storm DR. Interactions between neurogranin and calmodulin in vivo. J Biol Chem. 1999;274(12):7689-94.
[29]
Devireddy LR, Green MR. Transcriptional program of apoptosis induction following interleukin 2 deprivation: identification of RC3, a calcium/calmodulin binding protein, as a novel proapoptotic factor. Mol Cell Biol. 2003;23(13):4532-41.
[30]
Svaren J, Ehrig T, Abdulkadir SA, Ehrengruber MU, Watson MA, Milbrandt J. EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J Biol Chem. 2000;275(49):38524-31.
[31]
Yokota T, Kouno J, Adachi K, Takahashi H, Teramoto A, Matsumoto K, Sugisaki Y, Onda M, Tsunoda T. Identification of histological markers for malignant glioma by genome-wide expression analysis: dynein, alpha-PIX and sorcin. Acta Neuropathol. 2006;111(1):29-38.
[32]
Louis DN. A molecular genetic model of astrocytoma histopathology. Brain Pathol. 1997;7(2):755-64. Review.
[33]
Trog D, Moenkemann H, Breipohl W, Schueller H, Schild H, Golubnitschaja O. Non-sufficient cell cycle control as possible clue for the resistance of human malignant glioma cells to clinically relevant treatment conditions. Amino Acids. 2007;32(3):373-9.
[34]
Gottfried Y, Voldavsky E, Yodko L, Sabo E, Ben-Itzhak O, Larisch S. Expression of the pro-apoptotic protein ARTS in astrocytic tumors: correlation with malignancy grade and survival rate. Cancer. 2004;101(11):2614-21.
[35]
Nakayama M., Nakajima D., Nagase T., Nomura N., Seki N., Ohara O . Identification of high-molecular-weight proteins with multiple EGF-like motifs by motif-tr ap screening. Genomics. 1998. 51:27–34.
[36]
Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299(3):551-72. Review.
[37]
Nakayama M, Nakajima D, Yoshimura R, Endo Y, Ohara O. MEGF1/fat2 proteins containing extraordinarily large extracellular domains are localized to thin parallel fibers of cerebellar granule cells. Mol Cell Neurosci. 2002;20(4):563-78.
[38]
Louro I. D., Bailey E. C., Ruppert J. M. Suppression subtractive hybridization for identification and functional analys is of tumor suppress or genes. Methods Mol. Biol.–2003.–222:453–462.
[39]
Boon K, Riggins GJ. SAGE as a strategy to isolate cancer-related genes. Methods Mol Biol. 2003;222:463-79.