Biopolym. Cell. 2007; 23(3):155-166.
Сучасна картина спонтанного мутагенезу та можливе місце в ній природної таутомерії основ ДНК
1Черепенко О. Й., 1Говорун Д. М.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

В обзорі сумовано загальноприйняті у сучасній генетиці дані з вивчення різноманітних джерел спонтанного мутагенезу, який визначається внутрішньоклітинними процесами життєдіяльності клітини за будь-яких умов її функціонування. Охарактеризовано механізми виникнення переважного числа класів мутацій, а також можливі механізми регуляції швидкості спонтанного мутагенезу. Аналіз даних значного підвищення пулу дНТФ за умов генотоксичного стресу і відповідного зростання рівня мутацій у таких клітинах дозволяє пояснити цей результат ефектами таутомеріії основ ДНК, які виникають при скупченні цих молекул у тісному молекулярному просторі. Припускається, що контроль над швидкістю спонтанного мутагенезу може бути пов’язаним з контролем над концентрацією дНТФ у клітині.
Keywords: спонтанний мутагенез, таутомерія основ ДНК, рівні внутрішньоклітинного пулу дНТФ

References

[1] Mutation and Repair. Genetics (Spec iss).1998. 148:1403-1687.
[2] Drake JW. Looking backward on a century of mutation research. Environ Mol Mutagen. 1994;23 Suppl 24:11-4.
[3] Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. 1991;88(16):7160-4.
[4] Drake JW. Spontaneous mutation. Annu Rev Genet. 1991;25:125-46. Review.
[5] Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A. 1993;90(9):4171-5.
[6] Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics. 1998;148(4):1667-86.
[7] Eigen M. Viral quasispecies. Sci Am. 1993;269(1):42-9. Review.
[8] Drake JW. The distribution of rates of spontaneous mutation over viruses, prokaryotes, and eukaryotes. Ann N Y Acad Sci. 1999;870:100-7. Review.
[9] Gary TP, Colowick NE, Mosig G. A species barrier between bacteriophages T2 and T4: exclusion, join-copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics. 1998;148(4):1461-73.
[10] de Boer JG, Glickman BW. The lacI gene as a target for mutation in transgenic rodents and Escherichia coli. Genetics. 1998;148(4):1441-51. Review.
[11] Houle D., Kondrashov A. Mutation. Evolutionary Genetics. Oxford: Univ. press, 2006:32–48.
[12] Azam M, Latek RR, Daley GQ. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell. 2003;112(6):831-43.
[13] Danilov V. I., Hovorun D. M., Kurita N. The molecular mechanism of the spontaneous substitution mutations caused by tautomerism of bases: Post Hartree-Fock study of the DNA rare base pairs. Biopolym. Cell, 2005;21(1):70-79.
[14] Goodman MF, Fygenson KD. DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics. 1998;148(4):1475-82. Review.
[15] Schaaper RM. Antimutator mutants in bacteriophage T4 and Escherichia coli. Genetics. 1998;148(4):1579-85. Review.
[16] Kunz BA, Ramachandran K, Vonarx EJ. DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics. 1998;148(4):1491-505. Review.
[17] Friedberg EC. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1988;52(1):70-102. Review.
[18] Nelson JR, Lawrence CW, Hinkle DC. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science. 1996;272(5268):1646-9.
[19] Resnick MA. The repair of double-strand breaks in DNA; a model involving recombination. J Theor Biol. 1976;59(1):97-106.
[20] Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell. 1983;33(1):25-35.
[21] McGill CB, Holbeck SL, Strathern JN. The chromosome bias of misincorporations during double-strand break repair is not altered in mismatch repair-defective strains of Saccharomyces cerevisiae. Genetics. 1998;148(4):1525-33.
[22] Cavero S, Chahwan C, Russell P. Xlf1 is required for DNA repair by nonhomologous end joining in Schizosaccharomyces pombe. Genetics. 2007;175(2):963-7.
[23] Knuth MW, Gunderson SI, Thompson NE, Strasheim LA, Burgess RR. Purification and characterization of proximal sequence element-binding protein 1, a transcription activating protein related to Ku and TREF that binds the proximal sequence element of the human U1 promoter. J Biol Chem. 1990;265(29):17911-20.
[24] Messier H, Fuller T, Mangal S, Brickner H, Igarashi S, Gaikwad J, Fotedar R, Fotedar A. p70 lupus autoantigen binds the enhancer of the T-cell receptor beta-chain gene. Proc Natl Acad Sci U S A. 1993;90(7):2685-9.
[25] Kolotova T. YU.,Stegniy B. T., Kuchma I. YU., Dubinina N. V., Golovko A. N.,Chaykovskiy YU. B., Volyanskiy YU. Mechanisms and control of eukaryotic genome rearrangements. Kharkov Collegium, 2004. 263 p.
[26] Cherepenko E. Y., Hovorun D. M. Genome of eukaryotes: on efforts to read it from ? to ?. Biopolym Cell. 2007; 23(1):60-62
[27] Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7(1):21-33. Review.
[28] Lewin B. Genes VIII. Pearson Prentice Hall, 2004. 1027 p.
[29] Nussenzweig MC, Alt FW. Antibody diversity: one enzyme to rule them all. Nat Med. 2004;10(12):1304-5.
[30] Petersen-Mahrt S. DNA deamination in immunity. Immunol Rev. 2005;203:80-97. Review.
[31] Friedberg EC. The eureka enzyme: the discovery of DNA polymerase. Nat Rev Mol Cell Biol. 2006;7(2):143-7.
[32] Echols H, Goodman MF. Fidelity mechanisms in DNA replication. Annu Rev Biochem. 1991;60:477-511. Review.
[33] Smith BT, Walker GC. Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics. 1998;148(4):1599-610. Review.
[34] Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF. UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci U S A. 1999;96(16):8919-24.
[35] Reuven NB, Arad G, Maor-Shoshani A, Livneh Z. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J Biol Chem. 1999;274(45):31763-6.
[36] Jarosz DF, Godoy VG, Delaney JC, Essigmann JM, Walker GC. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates. Nature. 2006;439(7073):225-8.
[37] Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr, Miano JM. Defining the mammalian CArGome. Genome Res. 2006;16(2):197-207.
[38] Barnett RN, Bongiorno A, Cleveland CL, Joy A, Landman U, Schuster GB. Oxidative damage to DNA: counterion-assisted addition of water to ionized DNA. J Am Chem Soc. 2006;128(33):10795-800.
[39] Wittschieben JP, Reshmi SC, Gollin SM, Wood RD. Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Res. 2006;66(1):134-42.
[40] Avkin S, Sevilya Z, Toube L, Geacintov N, Chaney SG, Oren M, Livneh Z. p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol Cell. 2006;22(3):407-13.
[41] Burlaka AP Sidorik EP radical oxygen species and nitric oxide in cancer. Kyiv: Naukova Dumka, 2006. 227 p.
[42] Nossal NG. A new look at old mutants of T4 DNA polymerase. Genetics. 1998;148(4):1535-8. Review.
[43] Timms AR, Bridges BA. Reversion of the tyrosine ochre strain Escherichia coli WU3610 under starvation conditions depends on a new gene tas. Genetics. 1998;148(4):1627-35.
[44] Jackson AL, Loeb LA. The mutation rate and cancer. Genetics. 1998;148(4):1483-90. Review.
[45] Ninio J. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates. Genetics. 1991;129(3):957-62.
[46] Cairns J, Overbaugh J, Miller S. The origin of mutants. Nature. 1988;335(6186):142-5.
[47] Foster PL. Adaptive mutation: has the unicorn landed? Genetics. 1998;148(4):1453-9. Review.
[48] MacPhee D., Haynes R., Kunz B. A., Anderson D. Genetic aspects of deoxyribonucleotide metabolism. Prepared on the occasion of the 16th International Congress of Genetics. Toronto, Canada, 20-27 August 1988. Proceedings. Mutat Res. 1988;200(1-2):1-256.
[49] Kunz BA, Kohalmi SE, Kunkel TA, Mathews CK, McIntosh EM, Reidy JA. International Commission for Protection Against Environmental Mutagens and Carcinogens. Deoxyribonucleoside triphosphate levels: a critical factor in the maintenance of genetic stability. Mutat Res. 1994;318(1):1-64.
[50] Clayton LK, Goodman MF, Branscomb EW, Galas DJ. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J Biol Chem. 1979;254(6):1902-12.
[51] Fersht AR. Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A. 1979;76(10):4946-50.
[52] Kunkel TA, Schaaper RM, Beckman RA, Loeb LA. On the fidelity of DNA replication. Effect of the next nucleotide on proofreading. J Biol Chem. 1981;256(19):9883-9.
[53] Lyons SM, Speyer JF, Schendel PF. Interaction of an antimutator gene with DNA repair pathways in Escherichia coli K-12. Mol Gen Genet. 1985;198(2):336-47.
[54] Weinberg G, Ullman B, Martin DW Jr. Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc Natl Acad Sci U S A. 1981;78(4):2447-51.
[55] Zhao X, Muller EG, Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell. 1998;2(3):329-40.
[56] Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell. 2003;112(3):391-401.