Biopolym. Cell. 2006; 22(5):339-349.
Структура та функції біополімерів
Структурні характеристики інтеркаляційного комплексу шпилькової форми дезоксигептануклеотиду d(GCGAAGC) з антрацикліновим антибіотиком дауноміцином
1Костюков В. В., 1Пахомов В. І., 1Димант Л. Н.
  1. Севастопольський національний технічний университет
    вул. Університетська, 33, Севастополь, Україна, 99053

Abstract

Методами одно- та двовимірної 1Н ЯМР-спектроскопи і молекулярної механіки досліджено інтеркаляційний комплекс шпильки дезоксигептануклеотиду d(GCGAAGC) з антрациклі­новим антибіотиком дауноміцином у водно-сольовому розчині. Визначено рівноважні термодинамічні параметри комплексоутворення, розраховано просторову структуру комплексу, проведено порівняльний аналіз конформаційних та енергетич­них параметрів гептамеру без ліганду та в складі комплексу. Вивчено молекулярну динаміку комплексу у наносекундному часовому інтервалі, оцінено рухливість його структурних елементів. Проаналізовано взаємодію комплексу з найближчим водним оточенням.
Keywords: шпилька d(GCGAAGC), дауноміцин, інтеркаляція, ЯМР-спектроскопія, молекулярна динаміка

References

[1] Spiro C, Richards JP, Chandrasekaran S, Brennan RG, McMurray CT. Secondary structure creates mismatched base pairs required for high-affinity binding of cAMP response element-binding protein to the human enkephalin enhancer. Proc Natl Acad Sci U S A. 1993;90(10):4606-10.
[2] Miao DM, Honda Y, Tanaka K, Higashi A, Nakamura T, Taguchi Y, Sakai H, Komano T, Bagdasarian M. A base-paired hairpin structure essential for the functional priming signal for DNA replication of the broad host range plasmid RSF1010. Nucleic Acids Res. 1993;21(21):4900-3.
[3] Froelich-Ammon SJ, Gale KC, Osheroff N. Site-specific cleavage of a DNA hairpin by topoisomerase II. DNA secondary structure as a determinant of enzyme recognition/cleavage. J Biol Chem. 1994;269(10):7719-25.
[4] Zhu L, Chou SH, Reid BR. A single G-to-C change causes human centromere TGGAA repeats to fold back into hairpins. Proc Natl Acad Sci U S A. 1996;93(22):12159-64.
[5] Hirao I, Kawai G, Yoshizawa S, Nishimura Y, Ishido Y, Watanabe K, Miura K. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 1994;22(4):576-82.
[6] Hirao I, Nishimura Y, Tagawa Y, Watanabe K, Miura K. Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing. Nucleic Acids Res. 1992;20(15):3891-6.
[7] Yoshizawa S, Ueda T, Ishido Y, Miura K, Watanabe K, Hirao I. Nuclease resistance of an extraordinarily thermostable mini-hairpin DNA fragment, d(GCGAAGC) and its application to in vitro protein synthesis. Nucleic Acids Res. 1994;22(12):2217-21.
[8] Huang CH, Lin YS, Yang YL, Huang SW, Chen CW. The telomeres of Streptomyces chromosomes contain conserved palindromic sequences with potential to form complex secondary structures. Mol Microbiol. 1998;28(5):905-16.
[9] Astell CR, Chow MB, Ward DC. Sequence analysis of the termini of virion and replicative forms of minute virus of mice DNA suggests a modified rolling hairpin model for autonomous parvovirus DNA replication. J Virol. 1985;54(1):171-7.
[10] Dai X, Greizerstein MB, Nadas-Chinni K, Rothman-Denes LB. Supercoil-induced extrusion of a regulatory DNA hairpin. Proc Natl Acad Sci U S A. 1997;94(6):2174-9.
[11] Arai K, Low R, Kobori J, Shlomai J, Kornberg A. Mechanism of dnaB protein action. V. Association of dnaB protein, protein n', and other repriming proteins in the primosome of DNA replication. J Biol Chem. 1981;256(10):5273-80.
[12] Elias P, Lehman IR. Interaction of origin binding protein with an origin of replication of herpes simplex virus 1. Proc Natl Acad Sci U S A. 1988;85(9):2959-63.
[13] Cowing DW, Bardwell JC, Craig EA, Woolford C, Hendrix RW, Gross CA. Consensus sequence for Escherichia coli heat shock gene promoters. Proc Natl Acad Sci U S A. 1985;82(9):2679-83.
[14] Padrta P, Stefl R, Kr?l?k L, Z?dek L, Sklen?r V. Refinement of d(GCGAAGC) hairpin structure using one- and two-bond residual dipolar couplings. J Biomol NMR. 2002;24(1):1-14.
[15] Rentzeperis D, Alessi K, Marky LA. Thermodynamics of DNA hairpins: contribution of loop size to hairpin stability and ethidium binding. Nucleic Acids Res. 1993;21(11):2683-9.
[16] Veselkov AN, Pakhomov VI, Dymant LN, Baranovskiĭ SF, Tucker A, Davies D. [Complex formation of ethidium bromide with the palindromic sequence 5'-d(GpCpGpApApGpC) in aqueous solution by 1H-NMR spectroscopy]. Mol Biol (Mosk). 1998;32(4):639-48.
[17] Brown DR, Kurz M, Kearns DR, Hsu VL. Formation of multiple complexes between actinomycin D and a DNA hairpin: structural characterization by multinuclear NMR. Biochemistry. 1994;33(3):651-64.
[18] Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5?-d(GpCpGpC) and 5?-d(CpGpCpG) in aqueous solution. Faraday Trans. 1996;92(19):3545.
[19] Veselkov AN, Eaton RJ, Semanin AV, Pakhomov VI, Dymant LN, Karavaev L, Davies DV. [NMR study of complex formation of aromatic ligands with heptadeoxynucleotide 5'-d(GCGAAGC) forming stable hairpin structure in aqueous solution]. Mol Biol (Mosk). 2002;36(5):880-90.
[20] Arcamone F, Penso S. Anthracyclines and anthracenedione- based anticancer agents. New York: Elsevier, 1988. 125 p.
[21] Veselkov AN, Eaton RJ, Baranovsky SF, Osetrov SG, Pahomov VI, Bolotin PA, Djimant LN, Davies DB. NMR analysis of the interaction of antibiotic daunomycin with deoxytetranucleotide, 5'-d(TpGpCpA), in aqueous solution. Biopolym Cell. 1999; 15(2):154-62.
[22] Barthwal R, Sharma U, Srivastava N, Jain M, Awasthi P, Kaur M, Barthwal SK, Govil G. Structure of daunomycin complexed to d-TGATCA by two-dimensional nuclear magnetic resonance spectroscopy. Eur J Med Chem. 2006;41(1):27-39.
[23] Nunn CM, Van Meervelt L, Zhang SD, Moore MH, Kennard O. DNA-drug interactions. The crystal structures of d(TGTACA) and d(TGATCA) complexed with daunomycin. J Mol Biol. 1991;222(2):167-77.
[24] Brunger AT. X-PLOR. A system for X-ray crystallography and NMR. Yale: Univ. press, 1992. 382 p.
[25] MacKerell AD, Banavali N. All-atom empirical force field for nucleic acids. II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comp Chem. 2000. 21:105—120.
[26] Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem. 1983;4(2):187–217.
[27] Frederick CA, Williams LD, Ughetto G, van der Marel GA, van Boom JH, Rich A, Wang AH. Structural comparison of anticancer drug-DNA complexes: adriamycin and daunomycin. Biochemistry. 1990;29(10):2538-49.
[28] Cieplak P, Rao SN, Grootenhuis PD, Kollman PA. Free energy calculation on base specificity of drug--DNA interactions: application to daunomycin and acridine intercalation into DNA. Biopolymers. 1990;29(4-5):717-27.
[29] Davies DB, Eaton RJ, Baranovsky SF, Veselkov AN. NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J Biomol Struct Dyn. 2000;17(5):887-901.
[30] Ravishanker G, Auffinger P, Langley DR, Jayaram B, Young MA, Beveridge DL. Treatment of Counterions in Computer Simulations of DNA. Rev Comp Chem. 1997;317–72.
[31] Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926-35.
[32] Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys Rev. 1967;159(1):98–103.
[33] Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comp Phys. 1977;23(3):327–41.
[34] Pullman B. Molecular Mechanisms of Specificity in DNA–Antitumour Drug Interactions. Adv Drug Res. 1989;1–113.
[35] Veselkov AN, Pakhomov VI, Baranovskiĭ SF, Davies DB. [Analysis of conformation of oligonucleotide with sequences 5'-d(GpCpGpApApGpC) by 1H-NMR-spectroscopy]. Mol Biol (Mosk). 1997;31(6):1036-42.
[36] Wijmenga SS, Mooren MMW., Hilbers CW. NMR of macromolecules. A practical approach. London: Oxford Univ. press, 1993. 288 p.
[37] Trieb M, Rauch C, Wellenzohn B, Wibowo F, Loerting T, Mayer E, Liedl KR. Daunomycin intercalation stabilizes distinct backbone conformations of DNA. J Biomol Struct Dyn. 2004;21(5):713-24.