Biopolym. Cell. 2006; 22(1):3-17.
Огляди
Селен і дріжджі. Генетичні механізми
толерантності дріжджів до сполук селену
та їхніх аналогів
- Інститут біології клітини НАН України
вул. Драгоманова, 14/16, Львів, Україна, 79005 - Львівський національний університет імені Івана Франка
вул. Грушевського, 4, Львів, Україна, 79005
Abstract
Селен (Se) і його сполуки проявляють токсичну і канцерогенну дію на організми людини і тварин,
а в малих кількостях цей мікроелемент відіграє суттєву роль для живих істот. Тому важливо
встановити молекулярні основи токсичності Se і резистентності клітин до нього. Значну
кількість досліджень зазначеної проблеми здійснено на бактеріях. Можливість використання
молекулярно-генетичних методів зробила дріжджі (в основному Saccharomyces cerevisiae) зручною
модельною системою для вивчення механізмів резистентності еукаріотних клітин до селену на
молекулярному рівні. Виходячи з цього в огляді підсумовано дані, особливо генетичні, щодо
механізмів чутливості/резистентності дріжджів до селенових сполук.
Keywords: yeast, selenium, tolerance
Повний текст: (PDF, українською) (PDF, англійською)
References
[1]
Nakamuro K, Okuno T, Hasegawa T. Metabolism of Selenoamino Acids and Contribution of Selenium Methylation to Their Toxicity. J Health Sci. 2000;46(6):418–21.
[2]
Lobinski R, Edmonds JS, Suzuki KT, Uden PC. Species-selective determination of selenium compounds in biological materials (Technical Report). Pure Appl Chem. 2000;72(3):447-61
[3]
Tam?s MJ, Wysocki R. Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet. 2001;40(1):2-12.
[4]
[http://www.nsc.org/library/chemical/selenium.htm].
[5]
Birringer M, Pilawa S, Floh? L. Trends in selenium biochemistry. Nat Prod Rep. 2002;19(6):693-718.
[7]
K?hrl J, Brigelius-Floh? R, B?ck A, G?rtner R, Meyer O, Floh? L. Selenium in biology: facts and medical perspectives. Biol Chem. 2000;381(9-10):849-64.
[8]
Boles JO, Cisneros RJ, Weir MS, Odom JD, Villafranca JE, Dunlap RB. Purification and characterization of selenomethionyl thymidylate synthase from Escherichia coli: comparison with the wild-type enzyme. Biochemistry. 1991;30(46):11073-80.
[9]
Bernard AR, Wells TN, Cleasby A, Borlat F, Payton MA, Proudfoot AE. Selenomethionine labelling of phosphomannose isomerase changes its kinetic properties. Eur J Biochem. 1995;230(1):111-8.
[10]
Huber RE, Criddle RS. The isolation and properties of beta-galactosidase from Escherichia coli grown on sodium selenate. Biochim Biophys Acta. 1967;141(3):587-99.
[11]
Ip C. Lessons from basic research in selenium and cancer prevention. J Nutr. 1998;128(11):1845-54.
[12]
Snityns'ky? VV, Antoniak HL. [Biochemical role of selenium]. Ukr Biokhim Zh. 1994;66(5):3-16.
[13]
Fu LH, Wang XF, Eyal Y, She YM, Donald LJ, Standing KG, Ben-Hayyim G. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem. 2002;277(29):25983-91.
[14]
Golubev VI, Golubev NV. [Selenium tolerance of yeasts]. Mikrobiologiia. 2002;71(4):455-9.
[15]
Pinson B, Sagot I, Daignan-Fornier B. Identification of genes affecting selenite toxicity and resistance in Saccharomyces cerevisiae. Mol Microbiol. 2000;36(3):679-87.
[16]
Chaban L, Pokrovetska O, Stentchuk M, Gonchar M. Getting and physiological characteristics of selenite-resistant mutants of Pichia guilliermondii. Visn Lviv Univ (Biol Ser). 2003; (34):92-9.
[17]
McKeehan WL, Hamilton WG, Ham RG. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A. 1976;73(6):2023-7.
[18]
Turner RJ, Weiner JH, Taylor DE. Selenium metabolism in Escherichia coli. Biometals. 1998;11(3):223-7.
[19]
Kramer GF, Ames BN. Mechanisms of mutagenicity and toxicity of sodium selenite (Na2SeO3) in Salmonella typhimurium. Mutat Res. 1988;201(1):169-80.
[20]
Reshetnikova IA, Petrikevich SB. [Luminescence microscopic detection of selenium in Candida tropicalis yeasts]. Mikrobiologiia. 1974;43(1):159-61.
[21]
Reshetnikova IA, Petrikevich SB. [Electron microscopic study of Candida tropicalis yeasts grown on a medium containing selenium]. Mikrobiologiia. 1975;44(3):556-8.
[22]
Gharieb MM, Gadd GM. Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. Biometals. 1998;11(2):101-6.
[23]
Chaban JL, Stenchuk M, Gonchar M. Genetic analysis of selenite-resistant mutants of the yeast Pichia guilliermondii. 1st Ukr. Congr. Cell Biol. (Lviv, April 25-28, 2004): Abstract. Lviv, 2004: 376.
[24]
Suhajda A, Heg?czki J, Janzs? B, Pais I, Vereczkey G. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J Trace Elem Med Biol. 2000;14(1):43-7. PubMed PMID: 11966899.
[25]
Ponce de Le?n CA, Bay?n MM, Paquin C, Caruso JA. Selenium incorporation into Saccharomyces cerevisiae cells: a study of different incorporation methods. J Appl Microbiol. 2002;92(4):602-10.
[26]
Demirci A, Pometto AL 3rd. Production of organically bound selenium yeast by continuous fermentation. J Agric Food Chem. 1999;47(6):2491-5.
[27]
Demirci A, Pometto AL 3rd, Cox DJ. Enhanced organically bound selenium yeast production by fed-batch fermentation. J Agric Food Chem. 1999;47(6):2496-500.
[28]
Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125(1):71-8.
[29]
Bansal MP, Kaur T. Growth characteristics and selenium status changes of yeast cells with inorganic and organic selenium supplementation: selenium, a chemopreventive agent. J Med Food. 2002 Summer;5(2):85-90.
[30]
Yoshida M, Fukunaga K, Tsuchita H, Yasumoto K. An evaluation of the bioavailability of selenium in high-selenium yeast. J Nutr Sci Vitaminol (Tokyo). 1999;45(1):119-28.
[31]
Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements to growing fattening pigs. Zentralbl Veterinarmed A. 1998;45(9):551-7.
[32]
Ortman K, Pehrson B. Selenite and selenium yeast as feed supplements for dairy cows. Zentralbl Veterinarmed A. 1997;44(6):373-80.
[33]
Ortman K, Pehrson B. Effect of selenate as a feed supplement to dairy cows in comparison to selenite and selenium yeast. J Anim Sci. 1999;77(12):3365-70.
[34]
Knowles SO, Grace ND, Wurms K, Lee J. Significance of amount and form of dietary selenium on blood, milk, and casein selenium concentrations in grazing cows. J Dairy Sci. 1999;82(2):429-37.
[35]
Rock MJ, Kincaid RL, Carstens GE. Effects of prenatal source and level of dietary selenium on passive immunity and thermometabolism of newborn lambs. Small Rumin Res. 2001;40(2):129-138.
[36]
Bogye G, Alfthan G, Machay T. Bioavailability of enteral yeast-selenium in preterm infants. Biol Trace Elem Res. 1998;65(2):143-51.
[37]
Bogye G, Alfthan G, Machay T, Zubovics L. Enteral yeast-selenium supplementation in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1998;78(3):F225-6.
[38]
Seo YR, Kelley MR, Smith ML. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc Natl Acad Sci U S A. 2002;99(22):14548-53.
[39]
Whanger PD. Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr. 2002;21(3):223-32.
[40]
Lu J, Jiang C, Kaeck M, Ganther H, Vadhanavikit S, Ip C, Thompson H. Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol. 1995;50(2):213-9.
[41]
Sinha R, Said TK, Medina D. Organic and inorganic selenium compounds inhibit mouse mammary cell growth in vitro by different cellular pathways. Cancer Lett. 1996;107(2):277-84.
[42]
Alaejos MS, D?az Romero FJ, D?az Romero C. Selenium and cancer: some nutritional aspects. Nutrition. 2000;16(5):376-83.
[43]
Rosin MP. Inhibition of spontaneous mutagenesis in yeast cultures by selenite, selenate and selenide. Cancer Lett. 1981;13(1):7-14.
[44]
Anjaria KB, Madhvanath U. Genotoxicity of selenite in diploid yeast. Mutat Res. 1988;204(4):605-14.
[45]
Bronzetti G, Cini M, Andreoli E, Caltavuturo L, Panunzio M, Croce CD. Protective effects of vitamins and selenium compounds in yeast. Mutat Res. 2001;496(1-2):105-15.
[46]
Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y. Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics. 1997;145(3):627-35.
[47]
Breton A, Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977;132(1):224-32.
[48]
Smith FW, Ealing PM, Hawkesford MJ, Clarkson DT. Plant members of a family of sulfate transporters reveal functional subtypes. Proc Natl Acad Sci U S A. 1995;92(20):9373-7.
[49]
Simonics T, B?nszky L, Mar?z A. Genetics of sulphate assimilation in Schizosaccharomyces pombe (a short review). Acta Microbiol Immunol Hung. 2002;49(2-3):279-83.
[50]
B?nszky L, Simonics T, Mar?z A. Sulphate metabolism of selenate-resistant Schizosaccharomyces pombe mutants. J Gen Appl Microbiol. 2003;49(5):271-8.
[51]
Casalone E, Colella CM, Ricci F, Polsinelli M. Isolation and characterization of Saccharomyces cerevisiae mutants resistant to sulfate. Yeast. 1989; 5(Spec):287-91.
[52]
Casalone E, Colella CM, Daly S, Gallori E, Moriani L, Polsinelli M. Mechanism of resistance to sulphite in Saccharomyces cerevisiae. Curr Genet. 1992;22(6):435-40.
[53]
Casalone E, Colella CM, Daly S, Fontana S, Torricelli I, Polsinelli M. Cloning and characterization of a sulphite-resistance gene of Saccharomyces cerevisiae. Yeast. 1994;10(8):1101-10.
[54]
Breitwieser W, Price C, Schuster T. Identification of a gene encoding a novel zinc finger protein in Saccharomyces cerevisiae. Yeast. 1993;9(5):551-6.
[55]
Xu X, Wightman JD, Geller BL, Avram D, Bakalinsky AT. Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae. Curr Genet. 1994;25(6):488-96.
[56]
Avram D, Bakalinsky AT. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Genetics. 1996;144(2):511-21.
[57]
Park H, Bakalinsky AT. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast. 2000;16(10):881-8.
[58]
Park H, Lopez NI, Bakalinsky AT. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr Genet. 1999;36(6):339-44.
[59]
S?-Correia I, Tenreiro S. The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol. 2002;98(2-3):215-26.
[60]
Jelinsky SA, Samson LD. Global response of Saccharomyces cerevisiae to an alkylating agent. Proc Natl Acad Sci U S A. 1999;96(4):1486-91.
[61]
Flick JS, Johnston M. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol. 1991;11(10):5101-12.
[62]
62. Stratford M, Morgan P, Rose AH. Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii. Microbiol. 1987;133(8):2173–9.
[63]
Bakalinsky AT, Snow R. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast. 1990;6(5):367-82.
[64]
Cod?n AC, Gasent-Ram?rez JM, Ben?tez T. Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts. Appl Environ Microbiol. 1995;61(2):630-8.
[65]
Bidenne C, Blondin B, Dequin S, Vezinhet F. Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae. Curr Genet. 1992;22(1):1-7.
[66]
Rachidi N, Barre P, Blondin B. Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae. Mol Gen Genet. 1999;261(4-5):841-50.
[67]
Puig S, Querol A, Barrio E, P?rez-Ort?n JE. Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol. 2000;66(5):2057-61.
[68]
Goto-Yamamoto N, Kitano K, Shiki K, Yoshida Y, Suzuki T, Iwata T, et al. SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence. J Ferment Bioeng. 1998;86(5):427–33.
[69]
P?rez-Ort?n JE, Querol A, Puig S, Barrio E. Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res. 2002;12(10):1533-9.
[70]
Haugen AC, Kelley R, Collins JB, Tucker CJ, Deng C, Afshari CA, Brown JM, Ideker T, Van Houten B. Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biol. 2004;5(12):R95.