Biopolym. Cell. 2005; 21(3):187-219.
Огляди
Генетичний і епігенетичний контроль росту і розвитку рослин. Молекулярно-генетичний контроль проведення і реалізації сигналів ауксинів
1Циганкова В. А., 1Галкіна Л. А., 1Мусатенко Л. І., 1Ситник К. М.
  1. Інститут біоорганічної хімії та нафтохімії НАН України
    вул. Мурманська, 1, Київ, Україна, 02094
  2. Інститут ботаніки ім. М. Г. Холодного НАН України
    вул. Терещенківська, 2, Київ, Україна, 01601

Abstract

Представлено дані щодо регуляторних компонентів сигналь­ного шляху індоліл-3-оцтової кислоти (ЮК) у клітинах рос­лин: мембранні білки-рецептори, які сприймають екзогенні сигнали ІОК, систему вторинних месенджерів (cAMP, cGMP, інозитолтрифосфат і діацил^ліцерол, цитоплазматичний ка­льцій, «сенсорний» білок Са2+ сигналів – кальмодулін), що опосередковують передачу сигналів ІОК з рецепторів на ефектори (ферменти), які каталізують процеси внутрішньоклітинного метаболізму. Подано перелік ідентифікованих в ос­танні роки генів, які детермінують синтез білків, що беруть участь у проведенні сигналів ІОК у Arabidopsis: ген АВР1, який кодує мембранний білок – рецептор ІОК; AtCPl і AtCBLl гени, що кодують «сенсорні» білки Са2+ ; численні родини MDR генів мембранних білків, які беруть участь в активному АТР-залежному транспорті протонної форми ІОК через мем­брани клітин, PIN генів білків, що контролюють пасивний полярний внутрішньо- і міжклітинний транспорт аніонної форми ІОК, ARG1 і RCN1 генів білків, які відповідальні за передавання гравітропічних сигналів і регулюють полярний транспорт аніонної форми ІОК через мембрани спеціалі­зованих гравічутливих клітин — статоцитів, VTI генів SNA­RE білків, що беруть участь у везикулярному внутрішньо­клітинному транспорті ІОК, і AtMRP5 гена білка — транс­портера кон'югованих форм ІОК; ARF генів трансфакторів, шр активуються ауксином і контролюють експресію ранніх ауксин-регульованих Aux/IAA, SAUR, GH3 і ACS генів, а також численні родини SKP1, RBX1, ATCUL1, ASKI, ASK2, AXR1, ECR1, RCEI, ENR2p, Cdc4p, Cdc53p, Scplp, TIRI генів білків (членів убіквітин-протеїнлігазного комплексу) і CSN генів білків (членів мультисубодиничного білкового регулятор­ного комплексу СОР9 сигналосоми) — компонентів убіквітин/протеасомо-опосередкованого шляху деградації Аих/ІАА білків, що пригнічують проведення сигналів ауксину. Розгляну­ то гіпотетичну модель регуляції ІОК експресії генів.
Keywords: рецептори індоліл-3-оцтової кислоти (ІОК), вторинні мессенджери ІОК, білки — транспортери ІОК, ауксин-регульовані гени, убіквитин-протеасомний шлях деградації білків — репресорів ІОК

References

[1] Vivanco JM, Flares HE. Control of root formation by plant growth regulation. The plant growth regulators in agriculture and horticulture. Role and commercial uses. Ed. A. S. Basra. New York: Haworth press, 2000;1-25.
[2] Arteca R. Plant growth substances: principles and applications. New York: Chapman and Hall, 1996. 255 p.
[3] Arteca R. Hormonal stimulation of ethylene biosynthesis. Polyamines and ethylene: biochemistry, physiology, and interactions. Eds H. E. Flores, R. N. Arteca, J. C. Shanon. Rockville: Amer. Soc. Plant Physiol., 1990: 216-23.
[4] Vogel JP, Woeste KE, Theologis A, Kieber JJ. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci U S A. 1998;95(8):4766-71.
[5] Dehio C, Grossmann K, Schell J, Schm?lling T. Phenotype and hormonal status of transgenic tobacco plants overexpressing the rolA gene of Agrobacterium rhizogenes T-DNA. Plant Mol Biol. 1993;23(6):1199-210.
[6] Leopold AC. Contemplations of hormones as biological regulators. Hormone action in plant development-a critical appraisal. Eds G. V. Hoad, J. R. Lenton. London: Butterworth and Co Publ. LTD, 1987: 3-15.
[7] *Stoddart JL. Biochemical considerations in developmental studies. Hormone action in plant development-a critical appraisal. Eds G. V. Hoad, J. R. Lenton. London: Butterworth and Co Publ. LTD, 1987: 275-286.
[8] Gruenbaum Y, Naveh-Many T, Cedar H, Razin A. Sequence specificity of methylation in higher plant DNA. Nature. 1981;292(5826):860-2.
[9] Tsygankova VA, Galkina LA, Musatenko LI, Sytnik KM. Genetic and epigenetic control of plant growth and development. Genes of auxin biosynthesis and auxin-regulated genes controlling plant cell division and extension. Biopolym Cell. 2005; 21(2):107-133.
[10] Venis MA. Hormone-binding sites in plants. Harlow: Longman, 1985. 390 p.
[11] Venis MA. Hormone receptor sites and the study of plant development. Hormone action in plant development-a critical appraisal. Eds G. V. Hoad, J. R. Lenton. London: Butterworth and Co Publ. LTD, 1987-P. 53-61.
[12] Macdonald H. Auxin perception and signal transduction. Physiol Plant. 1997;100(3):423–30.
[13] Bauly JM, Sealy IM, Macdonald H, Brearley J, Dr?ge S, Hillmer S, Robinson DG, Venis MA, Blatt MR, Lazarus CM, Napier RM. Overexpression of auxin-binding protein enhances the sensitivity of guard cells to auxin. Plant Physiol. 2000;124(3):1229-38.
[14] Vreugdenhil D, Burgers A, Harkes PA, Libbenga KR. Modulation of the number of membrane-bound auxin-binding sites during the growth of batch-cultured tobacco cells. Planta. 1981;152(5):415-9.
[15] Hertel R, Thomson KS, Russo VE. In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta. 1972;107(4):325-40.
[16] Kende H, Zeevaart J. The Five "Classical" Plant Hormones. Plant Cell. 1997;9(7):1197-1210.
[17] Jones A. Auxin-Binding Proteins. Annu Rev Plant Physiol Plant Mol Biol. 1994;45(1):393–420.
[18] Barbier-Brygoo H, Ephritikhine G, Kl?mbt D, Ghislain M, Guern J. Functional evidence for an auxin receptor at the plasmalemma of tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989;86(3):891-5.
[19] Leblanc N, Perrot-Rechenmann C, Barbier-Brygoo H. The auxin-binding protein Nt-ERabp1 alone activates an auxin-like transduction pathway. FEBS Lett. 1999;449(1):57-60.
[20] Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG, Shillito R, Binns AN. Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science. 1998;282(5391):1114-7.
[21] Gehring CA, McConchie RM, Venis MA, Parish RW. Auxin-binding-protein antibodies and peptides influence stomatal opening and alter cytoplasmic pH. Planta. 1998;205(4):581-6.
[22] Kulaeva ON, Prokoptseva OS. Recent advances in the study of mechanisms of action of phytohormones. Biochemistry (Mosc). 2004;69(3):233-47.
[23] L?bler M, Kl?mbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J Biol Chem. 1985;260(17):9848-53.
[24] L?bler M, Kl?mbt D. Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). II. Localization of a putative auxin receptor. J Biol Chem. 1985;260(17):9854-9.
[25] Lobler M, Klambt D, Simon K. Auxin-binding in target tissue. J Cell Biochem. 1986; 10 B: 11-9.
[26] Kearns AW. The search for the auxin receptor. New York: D. Phyl. Thes. Univ. publ., 1982. 228 p.
[27] Oostrom H, Kulescha Z, van Vliet TB, Libbenga KR. Characterization of a cytoplasmic auxin receptor from tobacco-pith callus. Planta. 1980;149(1):44-7.
[28] Maan AC, van der Linde PC, Harkes PA, Libbenga KR. Correlation between the presence of membrane-bound auxin binding and root regeneration in cultured tobacco cells. Planta. 1985;164(3):376-8.
[29] Sudi J. Increases in the capacity of pea tissue to form acyl-aspartic acids specifically induced by auxins. New Phytol. 1966;65(1):9–21.
[30] Zurfluh LL, Guilfoyle TJ. Auxin- and ethylene-induced changes in the population of translatable messenger RNA in Basal sections and intact soybean hypocotyl. Plant Physiol. 1982;69(2):338-40.
[31] Babakov AV. Functions fusicoccin-binding proteins in higher plants. Proc. Dokl. IV Intern. Conf. "Regulators of plant growth and development." M .: Publishing House of Mos. state agrarian university, 1997: 10.
[32] Venis MA, Watson PJ. Naturally occuring modifiers of auxin-receptor interaction in corn: Identification as benzoxazolinones. Planta. 1978;142(1):103-7.
[33] Aducci P, Crosetti G, Federico R, Ballio A. Fusicoccin receptors. Evidence for endogenous ligand. Planta. 1980;148(3):208-10.
[34] Bhattacharyya K, Biswas BB. Induction of a high affinity binding site for auxin in Avena root membrane. Phytochemistry. 1982;21(6):1207–11.
[35] Trewavas A. An auxin induces the appearance of auxin-binding activity in artichoke tubers. Phytochemistry. 1980;19(7):1303–8.
[36] Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986;233(4761):305-12.
[37] Takahashi S, Katagiri T, Yamaguchi-Shinozaki K, Shinozaki K. An Arabidopsis gene encoding a Ca2+-binding protein is induced by abscisic acid during dehydration. Plant Cell Physiol. 2000;41(7):898-903.
[38] Sanders D, Brownlee C, Harper JF. Communicating with calcium . Plant Cell. 1999;11(4):691-706.
[39] Cheung WY. Calmodulin plays a pivotal role in cellular regulation. Science. 1980;207(4426):19-27.
[40] Roux SJ, Slocum RD. Role of calcium in mediating functions important for growth and development in plants. Calcium and cell function. New York: Acad, press, 1982. Vol. 3: 409-53.
[41] Poovaiah BW, Leopold AC. Effects of inorganic solutes on the binding of auxin. Plant Physiol. 1976;58(6):783-5.
[42] Hasenstein KH, Evans ML. Calcium dependence of rapid auxin action in maize roots. Plant Physiol. 1986;81:439-43.
[43] Knight H, Brandt S, Knight MR. A history of stress alters drought calcium signalling pathways in Arabidopsis. Plant J. 1998;16(6):681-7.
[44] Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol. 1995;2(9):758-67.
[45] Zielinski RE. Calmodulin and calmodulin-binding proteins in plants. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:697-725.
[46] Jang HJ, Pih KT, Kang SG, Lim JH, Jin JB, Piao HL, Hwang I. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress. Plant Mol Biol. 1998;37(5):839-47.
[47] Guerini D. Calcineurin: not just a simple protein phosphatase. Biochem Biophys Res Commun. 1997;235(2):271-5. Review.
[48] Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell. 1999;11(12):2393-405.
[49] Liu J, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science. 1998;280(5371):1943-5.
[50] Elliott DC, Batchelor SM, Cassar RA, Marinos NG. Calmodulin-binding drugs affect responses to cytokinin, auxin, and gibberellic Acid. Plant Physiol. 1983;72(1):219-24.
[51] Kelly GJ. Calcium, calmodulin, and the action of plant hormones. Trends Biochem Sci. 1984;9(1):4–5.
[52] Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature. 1995;376(6539):444-7.
[53] Ikura M. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci. 1996;21(1):14-7.
[54] Sze H, Liang F, Hwang I, Curran AC, Harper JF. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:433-62.
[55] Batov AYu, MArkova IV, Mashkova AV, Kalinina AYU, Katrichenko MI, Medvedev SS. IAA-sensitive calcium channels of the plasma membrane of cells of maize coleoptile. Proc. Dokl. IV Intern. Conf. "Regulators of plant growth and development." M .: Publishing House of Mos. state agrarian university, 1997: 74
[56] Borisova TA. Features seedling growth of maize in the inhibition of calcium metabolism. Proc. Dokl. IV Intern. Conf. "Regulators of plant growth and development." M .: Publishing House of Mos. state agrarian university, 1997:76.
[57] Noh B, Murphy AS, Spalding EP. Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell. 2001;13(11):2441-54.
[58] S?nchez-Fern?ndez R, Davies TG, Coleman JO, Rea PA. The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem. 2001;276(32):30231-44.
[59] Davies TGE, Coleman JOD. The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ. 2000;23(5):431–43.
[60] Decottignies A, Grant AM, Nichols JW, de Wet H, McIntosh DB, Goffeau A. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem. 1998;273(20):12612-22.
[61] Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I, Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999;39:361-98.
[62] Higgins CF. The ABC of channel regulation. Cell. 1995;82(5):693-6.
[63] Fert? J, K?hnel JM, Chapuis G, Rolland Y, Lewin G, Schwaller MA. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med Chem. 1999;42(3):478-89.
[64] Johnstone RW, Ruefli AA, Smyth MJ. Multiple physiological functions for multidrug transporter P-glycoprotein? Trends Biochem Sci. 2000;25(1):1-6.
[65] Theodoulou FL. Plant ABC transporters. Biochim Biophys Acta. 2000;1465(1-2):79-103.
[66] Roepe PD. What is the precise role of human MDR 1 protein in chemotherapeutic drug resistance? Curr Pharm Des. 2000;6(3):241-60.
[67] Dudler R, Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. J Biol Chem. 1992;267(9):5882-8.
[68] Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem. 1998;251(1-2):252-61.
[69] Sidler M, Hassa P, Hasan S, Ringli C, Dudler R. Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light . Plant Cell. 1998;10(10):1623-36.
[70] Wong LM, Abel S, Shen N, de la Foata M, Mall Y, Theologis A. Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development. Plant J. 1996;9(5):587-99.
[71] Gil P, Green PJ. Regulatory activity exerted by the SAUR-AC1 promoter region in transgenic plants. Plant Mol Biol. 1997;34(5):803-8.
[72] Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science. 2001;291(5502):306-9.
[73] Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inz? D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995;7(9):1405-19.
[74] Fei H, Sawhney VK. Role of plant growth substances in MS33-controlled stamen filament growth in Arabidopsis. Physiol Plant. 1999;105(1):165–70.
[75] Lobello G, Fambrini M, Baraldi R, Lercari B, Pugliesi C. Hormonal influence on photocontrol of the protandry in the genus Helianthus. J Exp Bot. 2000;51(349):1403-12.
[76] Lincoln C, Britton JH, Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990;2(11):1071-80.
[77] Murphy A, Peer WA, Taiz L. Regulation of auxin transport by aminopeptidases and endogenous flavonoids. Planta. 2000;211(3):315-24.
[78] Murphy AS, Hoogner KR, Peer WA, Taiz L. Identification, purification, and molecular cloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases from Arabidopsis. Plant Physiol. 2002;128(3):935-50.
[79] Faulkner IJ, Rubery PH. Flavonoids and flavonoid sulphates as probes of auxin-transport regulation in Cucurbita pepo hypocotyl segments and vesicles. Planta. 1992;186(4):618-25.
[80] Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis. Plant Physiol. 2001;126(2):524-35.
[81] Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis. Plant Physiol. 2001;126(2):536-48.
[82] Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A. 1998;95(25):15112-7.
[83] G?lweiler L, Guan C, M?ller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998;282(5397):2226-30.
[84] M?ller A, Guan C, G?lweiler L, T?nzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17(23):6903-11.
[85] Luschnig C, Gaxiola RA, Grisafi P, Fink GR. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12(14):2175-87.
[86] Estelle M. Polar auxin transport. New support for an old model . Plant Cell. 1998;10(11):1775-8.
[87] Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995;139(3):1393-409.
[88] Kiss JZ, Wright JB, Caspar T. Gravitropism in roots of intermediate-starch mutants of Arabidopsis. Physiol Plant. 1996;97(2):237-44.
[89] Dolan L. Pointing roots in the right direction: the role of auxin transport in response to gravity. Genes Dev. 1998;12(14):2091-5.
[90] Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996;85(2):183-94.
[91] Fujita H, Syono K. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant Cell Physiol. 1996;37(8):1094-101.
[92] Celenza JL Jr, Grisafi PL, Fink GR. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 1995;9(17):2131-42.
[93] Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH. ALTERED RESPONSE TO GRAVITY is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell. 2003;15(11):2612-25.
[94] Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 2001;15(20):2648-53.
[95] Friml J, Wi?niewska J, Benkov? E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature. 2002;415(6873):806-9.
[96] Friml J, Palme K. Polar auxin transport--old questions and new concepts? Plant Mol Biol. 2002;49(3-4):273-84.
[97] Blancaflor EB, Fasano JM, Gilroy S. Mapping the functional roles of cap cells in the response of Arabidopsis primary roots to gravity. Plant Physiol. 1998;116(1):213-22.
[98] Masson PH, Tasaka M, Morita MT, Guan C, Chen R, Boonsirichai KK. Arabidopsis thaliana: a model for the study of root and shoot gravitropism. Arabidopsis book. Eds E. M. Meyerowitz, C. R. Somerville, M. D. Rockville. New York: Amer. Soc. Plant Biologist, 2002: 199.
[99] Yoder TL, Zheng HQ, Todd P, Staehelin LA. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Physiol. 2001;125(2):1045-60.
[100] Sievers A, Busch MB. An inhibitor of the Ca(2+)-ATPases in the sarcoplasmic and endoplasmic reticula inhibits transduction of the gravity stimulus in cress roots. Planta. 1992;188(4):619-22.
[101] Sedbrook JC, Chen R, Masson PH. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci U S A. 1999;96(3):1140-5.
[102] Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao TH, Gilroy S. Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell. 2001;13(4):907-21.
[103] Plieth C, Trewavas AJ. Reorientation of seedlings in the earth's gravitational field induces cytosolic calcium transients. Plant Physiol. 2002;129(2):786-96.
[104] Zuber U, Buchberger A, Laufen T, Bukau B. DnaJ proteins. Molecular chaperones in the life cycle of proteins: structure, function and mode of action. Eds A. L. Fink, Y. Goto. New York: Marcel Dekker, 1998: 241-273.
[105] Artigues A, Iriarte A, Martinez-Carrion M. Binding to chaperones allows import of a purified mitochondrial precursor into mitochondria. J Biol Chem. 2002;277(28):25047-55.
[106] Lemmon SK. Clathrin uncoating: Auxilin comes to life. Curr Biol. 2001;11(2):R49-52.
[107] Tsai MY, Morfini G, Szebenyi G, Brady ST. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport. Mol Biol Cell. 2000;11(6):2161-73.
[108] Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH. The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol. 2003;133(1):100-12.
[109] Baluska F, Hlavacka A, Samaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D. F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol. 2002;130(1):422-31.
[110] Geldner N, Friml J, Stierhof YD, J?rgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature. 2001;413(6854):425-8.
[111] Ottenschl?ger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A. 2003;100(5):2987-91.
[112] Garbers C, DeLong A, Deru?re J, Bernasconi P, S?ll D. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 1996;15(9):2115-24.
[113] Zhou HW, Nussbaumer C, Chao Y, DeLong A. Disparate roles for the regulatory A subunit isoforms in Arabidopsis protein phosphatase 2A. Plant Cell. 2004;16(3):709-22.
[114] Deru?re J, Jackson K, Garbers C, S?ll D, Delong A. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J. 1999;20(4):389-99.
[115] Camilleri C, Azimzadeh J, Pastuglia M, Bellini C, Grandjean O, Bouchez D. The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell. 2002;14(4):833-45.
[116] Kwak JM, Moon JH, Murata Y, Kuchitsu K, Leonhardt N, DeLong A, Schroeder JI. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. Plant Cell. 2002;14(11):2849-61.
[117] Larsen PB, Cancel JD. Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J. 2003;34(5):709-18.
[118] Surpin M, Zheng H, Morita MT, Saito C, Avila E, Blakeslee JJ, Bandyopadhyay A, Kovaleva V, Carter D, Murphy A, Tasaka M, Raikhel N. The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell. 2003;15(12):2885-99.
[119] Fischer von Mollard G, Stevens TH. The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole. Mol Biol Cell. 1999;10(6):1719-32.
[120] Abeliovich H, Darsow T, Emr SD. Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p. EMBO J. 1999;18(21):6005-16.
[121] Sanderfoot AA, Assaad FF, Raikhel NV. The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 2000;124(4):1558-69.
[122] Sanderfoot AA, Pilgrim M, Adam L, Raikhel NV. Disruption of individual members of Arabidopsis syntaxin gene families indicates each has essential functions. Plant Cell. 2001;13(3):659-66.
[123] Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV. Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell. 2001;12(12):3733-43.
[124] Zheng H, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV. The plant vesicle-associated SNARE AtVTI1a likely mediates vesicle transport from the trans-Golgi network to the prevacuolar compartment. Mol Biol Cell. 1999;10(7):2251-64.
[125] Bassham DC, Sanderfoot AA, Kovaleva V, Zheng H, Raikhel NV. AtVPS45 complex formation at the trans-Golgi network. Mol Biol Cell. 2000;11(7):2251-65.
[126] Ahmed SU, Rojo E, Kovaleva V, Venkataraman S, Dombrowski JE, Matsuoka K, Raikhel NV. The plant vacuolar sorting receptor AtELP is involved in transport of NH(2)-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. J Cell Biol. 2000;149(7):1335-44.
[127] Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 2002;129(3):1181-93.
[128] Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M. Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell. 2002;14(1):47-56.
[129] Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell. 2002;14(1):33-46.
[130] Rojo E, Gillmor CS, Kovaleva V, Somerville CR, Raikhel NV. VACUOLELESS1 is an essential gene required for vacuole formation and morphogenesis in Arabidopsis. Dev Cell. 2001;1(2):303-10.
[131] Sato TK, Rehling P, Peterson MR, Emr SD. Class C Vps protein complex regulates vacuolar SNARE pairing and is required for vesicle docking/fusion. Mol Cell. 2000;6(3):661-71.
[132] Rojo E, Zouhar J, Kovaleva V, Hong S, Raikhel NV. The AtC-VPS protein complex is localized to the tonoplast and the prevacuolar compartment in arabidopsis. Mol Biol Cell. 2003;14(2):361-9.
[133] Gaedeke N, Klein M, Kolukisaoglu U, Forestier C, M?ller A, Ansorge M, Becker D, Mamnun Y, Kuchler K, Schulz B, Mueller-Roeber B, Martinoia E. The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomata movement. EMBO J. 2001;20(8):1875-87.
[134] Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 1999;11(3):365-76.
[135] Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B. Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell. 2000;12(12):2395-2408.
[136] Abel S, Theologis A. Early genes and auxin action. Plant Physiol. 1996;111(1):9-17.
[137] Fujii N, Kamada M, Yamasaki S, Takahashi H. Differential accumulation of Aux/IAA mRNA during seedling development and gravity response in cucumber (Cucumis sativus L.). Plant Mol Biol. 2000;42(5):731-40.
[138] Nagpal P, Walker LM, Young JC, Sonawala A, Timpte C, Estelle M, Reed JW. AXR2 encodes a member of the Aux/IAA protein family. Plant Physiol. 2000;123(2):563-74.
[139] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002;49(3-4):373-85.
[140] Dargeviciute A, Roux C, Decreux A, Sitbon F, Perrot-Rechenmann C. Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum. Plant Cell Physiol. 1998;39(10):993-1002.
[141] Nebenf?hr A, White TJ, Lomax TL. The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato. Plant Mol Biol. 2000;44(1):73-84.
[142] Knauss S, Rohrmeier T, Lehle L. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem. 2003;278(26):23936-43.
[143] Tian Q, Uhlir NJ, Reed JW. Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell. 2002;14(2):301-19.
[144] Abel S, Nguyen MD, Chow W, Theologis A. ACS4, a primary indoleacetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. Structural characterization, expression in Escherichia coli, and expression characteristics in response to auxin. J Biol Chem. 1995;270(32):19093-9.
[145] Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O. Changes in auxin response from mutations in an AUX/IAA gene. Science. 1998;279(5355):1371-3.
[146] Tian Q, Reed JW. Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development. 1999;126(4):711-21.
[147] Timpte C, Wilson AK, Estelle M. The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics. 1994;138(4):1239-49.
[148] Leyser HM, Pickett FB, Dharmasiri S, Estelle M. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 1996;10(3):403-13.
[149] Kim BC, Soh MC, Kang BJ, Furuya M, Nam HG. Two dominant photomorphogenic mutations of Arabidopsis thaliana identified as suppressor mutations of hy2. Plant J. 1996;9(4):441-56.
[150] Reed JW, Elumalai RP, Chory J. Suppressors of an Arabidopsis thaliana phyB mutation identify genes that control light signaling and hypocotyl elongation. Genetics. 1998;148(3):1295-310.
[151] Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell. 2001;13(1):101-11.
[152] Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci U S A. 2000;97(5):2379-84.
[153] Kotake T, Nakagawa N, Takeda K, Sakurai N. Auxin-induced elongation growth and expressions of cell wall-bound exo- and endo-beta-glucanases in barley coleoptiles. Plant Cell Physiol. 2000;41(11):1272-8.
[154] Hooley R. Auxin signaling. Homing In with targeted genetics . Plant Cell. 1998;10(10):1581-4.
[155] Oono Y, Chen QG, Overvoorde PJ, K?hler C, Theologis A. age Mutants of Arabidopsis exhibit altered auxin-regulated gene expression. Plant Cell. 1998;10(10):1649-62.
[156] Ballas N, Wong LM, Ke M, Theologis A. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci U S A. 1995;92(8):3483-7.
[157] Rogg LE, Lasswell J, Bartel B. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell. 2001;13(3):465-80.
[158] Poovaiah BW, Wang W, Yang T. Novel calcium/calmodulinmodulated proteins. Chimeric protein kinase and small auxin up-regulated RNA. Signal transduction in plant: current advances. Ed. S. K. Sopory. New York: Kluwer Acad. Plenum Publ., 2000;167-76.
[159] McClure BA, Guilfoyle T. Characterization of a class of small auxin-inducible soybean polyadenylated RNAs. Plant Mol Biol. 1987;9(6):611-23.
[160] McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ. Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell. 1989;1(2):229-39.
[161] McClure BA, Guilfoyle T. Rapid redistribution of auxin-regulated RNAs during gravitropism. Science. 1989;243:91-3.
[162] Li Y, Strabala TJ, Hagen G, Guilfoyle TJ. The soybean SAUR open reading frame contains a cis element responsible for cycloheximide-induced mRNA accumulation. Plant Mol Biol. 1994;24(5):715-23.
[163] Newman TC, Ohme-Takagi M, Taylor CB, Green PJ. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell. 1993;5(6):701-14.
[164] Yang T, Poovaiah BW. Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem. 2000;275(5):3137-43.
[165] Hagen G, Martin G, Li Y, Guilfoyle TJ. Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol. 1991;17(3):567-79.
[166] Tsygankova VA, Galkina LA, Musatenko LI, Sytnik KM. Genetical and epigenetical control of plant growth and development. Genes of photomorphogenesis and regulation of their expression by light. Biopolym Cell. 2004; 20(6):451-71.
[167] Hobbie LJ. Auxin: Molecular genetic approaches in Arabidopsis. Plant Physiol Biochem. 1998;36(1-2):91–102.
[168] Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 1998;12(2):198-207.
[169] Lazarus CM. Hormonal regulation of plant gene expression. Developmental regulation of plant gene expression. Plant biotechnology series. New York: D. Grierson-Chapman and Hall, Inc., 1991. Vol. 2: 42-74.
[170] Guilfoyle T, Hagen G, Ulmasov T, Murfett J. How does auxin turn on genes? Plant Physiol. 1998;118(2):341-7.
[171] Tiwari SB, Wang XJ, Hagen G, Guilfoyle TJ. AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell. 2001;13(12):2809-22.
[172] Kepinski S, Leyser O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc Natl Acad Sci U S A. 2004;101(33):12381-6.
[173] Col?n-Carmona A, Chen DL, Yeh KC, Abel S. Aux/IAA proteins are phosphorylated by phytochrome in vitro. Plant Physiol. 2000;124(4):1728-38.
[174] Worley CK, Zenser N, Ramos J, Rouse D, Leyser O, Theologis A, Callis J. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 2000;21(6):553-62.
[175] Ouellet F, Overvoorde PJ, Theologis A. IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell. 2001;13(4):829-41.
[176] Abel S, Oeller PW, Theologis A. Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci U S A. 1994;91(1):326-30.
[177] Morgan KE, Zarembinski TI, Theologis A, Abel S. Biochemical characterization of recombinant polypeptides corresponding to the predicted betaalphaalpha fold in Aux/IAA proteins. FEBS Lett. 1999;454(3):283-7.
[178] Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276(5320):1865-8.
[179] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9(11):1963-71.
[180] Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19(3):309-19.
[181] Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A. 1999;96(10):5844-9.
[182] Luerssen H, Kirik V, Herrmann P, Mis?ra S. FUSCA3 encodes a protein with a conserved VP1/AB13-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 1998;15(6):755-64.
[183] Kagaya Y, Ohmiya K, Hattori T. RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res. 1999;27(2):470-8.
[184] Hardtke CS, Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 1998;17(5):1405-11.
[185] Harper RM, Stowe-Evans EL, Luesse DR, Muto H, Tatematsu K, Watahiki MK, Yamamoto K, Liscum E. The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue. Plant Cell. 2000;12(5):757-70.
[186] Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development. 1997;124(22):4481-91.
[187] Pfluger J, Zambryski P. The role of SEUSS in auxin response and floral organ patterning. Development. 2004;131(19):4697-707.
[188] Bennett SRM, Alvarez J, Bossinger G, Smyth DR. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 1995;8(4):505–20.
[189] Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development. 2001;128(20):4057-67.
[190] Nemhauser JL, Feldman LJ, Zambryski PC. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development. 2000;127(18):3877-88.
[191] Dharmasiri S, Estelle M. The role of regulated protein degradation in auxin response. Plant Mol Biol. 2002;49(3-4):401-9.
[192] Franks RG, Wang C, Levin JZ, Liu Z. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development. 2002;129(1):253-63.
[193] Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ. Composite structure of auxin response elements. Plant Cell. 1995;7(10):1611-23.
[194] Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J. 1993;4(3):433-43.
[195] Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989;86(20):7890-4.
[196] Krawczyk S, Thurow C, Niggeweg R, Gatz C. Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential. Nucleic Acids Res. 2002;30(3):775-81.
[197] Xiang C, Miao ZH, Lam E. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol. 1996;32(3):415-26.
[198] Sassone-Corsi P, Borrelli E. Transcriptional regulation by trans-acting factors. Trends Genet. 1986;2:215–9.
[199] Fukazawa J, Sakai T, Ishida S, Yamaguchi I, Kamiya Y, Takahashi Y. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell. 2000;12(6):901-15.
[200] Klinedinst S, Pascuzzi P, Redman J, Desai M, Arias J. A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol Biol. 2000;42(5):679-88.
[201] Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrich R. Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci U S A. 1999;96(21):12186-91.
[202] Xie Q, Frugis G, Colgan D, Chua NH. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000;14(23):3024-36.
[203] Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 2000;24(6):785-96.
[204] Lammer D, Mathias N, Laplaza JM, Jiang W, Liu Y, Callis J, Goebl M, Estelle M. Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex. Genes Dev. 1998;12(7):914-26.
[205] Abramova EB, Karpov VL. The proteasome: destruction for the sake of creation. Priroda. 2003;7:1-15.
[206] Hochstrasser M. There's the rub: a novel ubiquitin-like modification linked to cell cycle regulation. Genes Dev. 1998;12(7):901-7.
[207] del Pozo JC, Estelle M. F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol Biol. 2000;44(2):123-8.
[208] Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999;13(13):1678-91.
[209] Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature. 2001;414(6861):271-6.
[210] Zenser N, Ellsmore A, Leasure C, Callis J. Auxin modulates the degradation rate of Aux/IAA proteins. Proc Natl Acad Sci U S A. 2001;98(20):11795-800.
[211] Gray WM, Estelle I. Function of the ubiquitin-proteasome pathway in auxin response. Trends Biochem Sci. 2000;25(3):133-8.
[212] Liakopoulos D, Doenges G, Matuschewski K, Jentsch S. A novel protein modification pathway related to the ubiquitin system. EMBO J. 1998;17(8):2208-14.
[213] Peng Z, Serino G, Deng XW. Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in Arabidopsis. Plant Cell. 2001;13(11):2393-407.
[214] Freilich S, Oron E, Kapp Y, Nevo-Caspi Y, Orgad S, Segal D, Chamovitz DA. The COP9 signalosome is essential for development of Drosophila melanogaster. Curr Biol. 1999;9(20):1187-90.
[215] Mundt KE, Porte J, Murray JM, Brikos C, Christensen PU, Caspari T, Hagan IM, Millar JB, Simanis V, Hofmann K, Carr AM. The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Curr Biol. 1999;9(23):1427-30.
[216] Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M, Dubiel W. A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 1998;12(6):469-78.
[217] Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell. 1996;86(1):115-21.
[218] Mahalingam S, Ayyavoo V, Patel M, Kieber-Emmons T, Kao GD, Muschel RJ, Weiner DB. HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle. Proc Natl Acad Sci U S A. 1998;95(7):3419-24.
[219] Wei N, Deng XW. Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet. 1999;15(3):98-103.
[220] Wei N, Deng XW. The role of the COP/DET/FUS genes in light control of arabidopsis seedling development. Plant Physiol. 1996;112(3):871-8.
[221] Chory J. Light modulation of vegetative development. Plant Cell. 1997;9(7):1225-34.
[222] Kwok SF, Piekos B, Misera S, Deng XW. A complement of ten essential and pleiotropic arabidopsis COP/DET/FUS genes is necessary for repression of photomorphogenesis in darkness. Plant Physiol. 1996;110(3):731-42.
[223] Kwok SF, Solano R, Tsuge T, Chamovitz DA, Ecker JR, Matsui M, Deng XW. Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell. 1998;10(11):1779-90.
[224] Karniol B, Malec P, Chamovitz DA. Arabidopsis FUSCA5 encodes a novel phosphoprotein that is a component of the COP9 complex. Plant Cell. 1999;11(5):839-48.
[225] Serino G, Tsuge T, Kwok S, Matsui M, Wei N, Deng XW. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Plant Cell. 1999;11(10):1967-80.
[226] Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000;405(6785):462-6.
[227] Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng XW. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science. 2001;292(5520):1379-82.
[228] Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Shevchenko A, Deshaies RJ. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science. 2001;292(5520):1382-5.
[229] Samach A, Klenz JE, Kohalmi SE, Risseeuw E, Haughn GW, Crosby WL. The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem. Plant J. 1999;20(4):433-45.
[230] Levin JZ, Meyerowitz EM. UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell. 1995;7(5):529-48.
[231] Goto N, Starke M, Kranz AR. Effect of gibberellins on flower development of the pm-formed mutant of Arabidopsis thaliana. Arabidopsis Inf Serv. 1987; 23:66-71.