Biopolym. Cell. 2005; 21(2):107-133.
Огляди
Генетичний і епігенетичний контроль росту і розвитку рослин. Гени біосинтезу ауксину і гени, що регулюються ауксином та контролюють поділ і розтягнення клітин рослин
1Циганкова В. А., 1Галкіна Л. А., 2Мусатенко Л. І., 2Ситник К. М.
  1. Інститут біоорганічної хімії та нафтохімії НАН України
    вул. Мурманська, 1, Київ, Україна, 02094
  2. Інститут ботаніки ім. М. Г. Холодного НАН України
    вул. Терещенківська, 2, Київ, Україна, 01601

Abstract

В огляді розглянуто спектр генів, які детермінують різні шляхи біосинтезу індоліл-3-оцтової кислоти (ІОК), іденти­фікованих у Arabidopsis: TRP1 гена антранілатфосфорибозил-трансферази 1, TRP3 гена триптофансинтази і родини NIT генів нітрилаз, що каталізують триптофан-незалежний шлях біосинтезу ІОК із попередника індол-3-ацетонітрилу; CYP79B та CYP83B1 генів (членів родини генів цитохромів Р450), які контролюють біосинтез ІОК із триптофану; генів фермен­тів, що каталізують біосинтез ІОК з індоліл-3-масляної кислоти: РХА1 і РЕХ14 генів пероксисомних мембранних білків – членів родини АВС-АТРаз, РЕХ5 і РЕХ7 генів цитоп­лазматичних білків-рецепторів, генів пероксисомних матриксних білків-ферментів (асхЗ гена ацил-СоА оксидази, аіті гена багатофункціонального білка і pedl гена тіолази); генів фер­ментів, що каталізують утворення кон'югатів ІОК та їхній гідроліз: генів IAGLc синтази, IAInos трансферази, серинкарбоксипептидаз-подібної IAInos ацилтрансферази і IAR3 гена ІОК-Ала гідролази. Представлено номенклатуру і класифі­кацію генів, які регулюються ауксином і відповідають за клітинний поділ генів циклінів та циклін-залежних протеїн- кіназ, а також генів численної родини мітоген-активованих протеїнкіназ. Детально розглянуто гени ферментів, що регуюються ауксином і беруть участь у біосинтезі і гідролізі полісахаридних компонентів стінок клітин рослин у період їхнього росту розтягненням: ЕІ ген ендо-1,3:1 A-β-D-глюканази і ЕХОІІ ген екзо-β-D-глюканази, численні родини ХЕТ генів ксилоглюканендотрансглікозилаз, ZeEXP генів експансинів, AtFUT генів ксилоглюкан-специфічних β-1,6- і β-1,2-фукозил-трансфераз і глікозилтрансфераз, CSL генів ксилоглюканглюансинтаз та β-1,4-манансинтаз, MUR генів ксилоглюканових галактозилтрансфераз, а також AtXTl ген і гомологічні AtGT2-7 гени ксилоглюканових ксилозилтрансфераз у Arabi­dopsis; XS1 ген ксилансинтази у рису та GS1 ген глюкансинтази у кукурудзи. Обговорюється роль структурного білка клітинної стінки – екстенсину (що кодується HRGP геном, який регулюється ауксином) у захисті рослин від патогенів і несприятливих факторів довкілля.
Keywords: гени біосинтезу індоліл-3-оцтової кислоти (ІОК), гени, які регулюються ауксином, поділ і розтягнення клітин рослин

References

[1] Leopold AC, Nooden LD. Hormonal regulatory system in plants. In: Horm Regul Develop. 1984; 2: 4-22.
[2] Snow R. The correlative inhibition of the growth of axillary buds. Ann Bot. 1925; 39: 841-59.
[3] Wareing PF. Endogenous inhibitors in seed germination and dormancy. Encyclopedia of plant physiology. Ed. W. Ruhland. Berlin; Gottingen; Heidelberg; Springer, 1965. Vol. 15, pt 2: 909-924.
[4] Darwin C, Darwin F. The power of movement in plants. Ed. J. Murray. London, 1880.880 p.
[5] Brown HT, Morris GH. Researches of the germination of some of the Gramineae II J Chem Soc. 1890; 57:458—528.
[6] Loeb J. Chemical Basis of Correlation. I. Production of Equal Masses of Shoots by Equal Masses of Sister Leaves in Bryophyllum calycinum. Bot Gaz. 1918; 65:150-74.
[7] Molisch H. Die Lebensdauer der Pflanze. Jena: Fischer, 1928 (Transi, by Fulling E. H. Lancaster: Science press, 1938).
[8] Sytnik KM. Nikolai Grigorevich Kholodnyy (On the centenary of the birth). Ukr Bot Zh.. 1982; 39(3):1-3.
[9] Merkis AI. Tropisms of plants in the light of the theory of Kholodnyy-Venta. Ukr Bot Zh. 1982; 39(3):16-31.
[10] Went F, Thimann K V. Phytohormones. New York: MacMillan, 1937. 294 p.
[11] Thimann KV. Plant growth. Fundamental aspects of normal and malignant growth. Ed. W. W. Nowinski. Amsterdam: Elsevier, 1960;748-822.
[12] Pilet PE. Action of gibberellins on auxin-oxidase activity of tissues cultivated in vitro. C R Hebd Seances Acad Sci. 1957;245(16):1327-8.
[13] The plant growth regulators in agriculture and horticulture. Role and commercial uses. Ed. S. B. Amarjit. New York: Haworth press, 2000. 255 p.
[14] Arteca R. Plant growth substances: principles and applications. New York: Chapman and Hall, 1996. 255 p.
[15] Creelman RA, Mullet JE. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression. Plant Cell. 1997;9(7):1211-23.
[16] Gross D, Parthier B. Novel natural substances acting in plant growth regulation. J Plant Growth Regul. 1994;13(2):93–114.
[17] Lutsenko EK, Marushko EA, Leonova TG. Action fusicoccin in the early stages of germination of sorghum under salinity. Tez. rep. IV Intern. Conf. "Regulators pocta and development of plants". M.: Izd Mos. Gos. Agrarb. Unov, 1997:105.
[18] Chaylakhyan MKh, Butenko PG, Kulaeva ON, Kefeli II, Aksenova NP. Terminology growth and development of higher plants. M.: Nauka, 1982. 96 p.
[19] McCourt P. Genetic analysis of hormone signaling. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:219-243.
[20] Becraft PW, Kang SH, Suh SG. The maize CRINKLY4 receptor kinase controls a cell-autonomous differentiation response. Plant Physiol. 2001;127(2):486-96.
[21] Vivanco JM, Flores HE. Control of root formation by plant growth regulation. The plant growth regulators in agriculture and horticulture. Role and commercial uses. Ed. S. B. Amarjit. New York: Haworth press, 2000: 1-25.
[22] Shneider EA, Wightman F. Auxins. Phytohormones and related compounds-a comprehensive treatise. Amsterdam: Elsevier, 1978: 29-105.
[23] Kefeli V. Natural growth inhibitors and phytohormones. Haague: Junh Publ., 1978. 294 p.
[24] Dorffling K. Das Hormonsystem der pflanzen. Stuttgard; New York: Georg Thieme, 1982. 304 p.
[25] Kende H, Zeevaart J. The Five "Classical" Plant Hormones. Plant Cell. 1997;9(7):1197-1210.
[26] Jakubowska A, Kowalczyk S. The auxin conjugate 1-O-indole-3-acetyl-beta-D-glucose is synthesized in immature legume seeds by IAGlc synthase and may be used for modification of some high molecular weight compounds. J Exp Bot. 2004;55(398):791-801.
[27] Hedden P, Phillips AL. Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol. 2000;11(2):130-7.
[28] Ficcadenti N, Sestili S, Pandolfini T, Cirillo C, Rotino GL, Spena A. Genetic engineering of parthenocarpic fruit development in tomato. Mol Breeding. 1999; 5: 463-70.
[29] Romano CP, Hein MB, Klee HJ. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 1991;5(3):438-46.
[30] Bartel B. Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:51-66.
[31] Normanly J, Slovin JP, Cohen JD. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol. 1995;107(2):323-329.
[32] M?ller A, Weiler EW. Indolic constituents and indole-3-acetic acid biosynthesis in the wild-type and a tryptophan auxotroph mutant of Arabidopsis thaliana. Planta. 2000;211(6):855-63.
[33] Rekoslavskaya NI, Bandurski RS. Indole as a precursor of indole-3-acetic acid in Zea mays. Phytochemistry. 1994;35(4):905–9.
[34] Dolan L. Pointing roots in the right direction: the role of auxin transport in response to gravity. Genes Dev. 1998;12(14):2091-5.
[35] Bartel B, Fink GR. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994;91(14):6649-53.
[36] Schmidt RC, M?ller A, Hain R, Bartling D, Weiler EW. Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme. Plant J. 1996;9(5):683-91.
[37] Grsic S, Sauerteig S, Neuhaus K, Albrecht M, Rossiter J, Ludwig-M?ller J. Physiological analysis of transgenic Arabidopsis thaliana plants expressing one nitrilase isoform in sense or antisense direction. J Plant Physiol. 1998;153(3-4):446–56.
[38] Bak S, Feyereisen R. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol. 2001;127(1):108-18.
[39] Bak S. CYP83B1, a Cytochrome P450 at the Metabolic Branch Point in Auxin and Indole Glucosinolate Biosynthesis in Arabidopsis. Plant Cell, 2001;13(1):101–11.
[40] Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C. Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J. 1998;14(5):603-11.
[41] Collett CE, Harberd NP, Leyser O. Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol. 2000;124(2):553-62.
[42] Mizutani M, Ward E, Ohta D. Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. Plant Mol Biol. 1998;37(1):39-52.
[43] Reymond P, Weber H, Damond M, Farmer EE. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell. 2000;12(5):707-20.
[44] Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19(3):309-19.
[45] Hu J. Regulation of peroxisome biogenesis and function. MSU-DOE plant research laboratory. Thirty-Eighth Ann. Rept USA. New York, 2003: 19-26.
[46] Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol. 2001;127(3):1266-78.
[47] del R?o LA, Corpas FJ, Sandalio LM, Palma JM, G?mez M, Barroso JB. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot. 2002;53(372):1255-72.
[48] Olsen LJ. The surprising complexity of peroxisome biogenesis. Plant Mol Biol. 1998;38(1-2):163-89.
[49] Ludwig-Muller J. Indole-3-butyric acid in plant growth and development. Plant Growth Regul. 2000; 32:219-30.
[50] Rottensteiner H, Stein K, Sonnenhol E, Erdmann R. Conserved function of pex11p and the novel pex25p and pex27p in peroxisome biogenesis. Mol Biol Cell. 2003;14(10):4316-28.
[51] Zolman BK, Yoder A, Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics. 2000;156(3):1323-37.
[52] Davies TGE, Coleman JOD. The Arabidopsis thaliana ATP-binding cassette proteins: an emerging superfamily. Plant Cell Environ. 2000;23(5):431–43.
[53] Swartzman EE, Viswanathan MN, Thorner J. The PAL1 gene product is a peroxisomal ATP-binding cassette transporter in the yeast Saccharomyces cerevisiae. J Cell Biol. 1996;132(4):549-63.
[54] Holzinger A, Mayerhofer P, Berger J, Lichtner P, Kammerer S, Roscher AA. Full length cDNA cloning, promoter sequence, and genomic organization of the human adrenoleukodystrophy related (ALDR) gene functionally redundant to the gene responsible for X-linked adrenoleukodystrophy. Biochem Biophys Res Commun. 1999;258(2):436-42.
[55] van Veen HW. Towards the molecular mechanism of prokaryotic and eukaryotic multidrug transporters. Semin Cell Dev Biol. 2001;12(3):239-45.
[56] Subramani S. Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev. 1998;78(1):171-88.
[57] Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L, Graham IA. Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem. 2000;275(44):34375-81.
[58] Richmond TA, Bleecker AB. A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell. 1999;11(10):1911-24.
[59] Hayashi M, Toriyama K, Kondo M, Nishimura M. 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation. Plant Cell. 1998;10(2):183-95.
[60] Hayashi M, Nito K, Toriyama-Kato K, Kondo M, Yamaya T, Nishimura M. AtPex14p maintains peroxisomal functions by determining protein targeting to three kinds of plant peroxisomes. EMBO J. 2000;19(21):5701-10.
[61] Sytnik KM, Musatenko LI, Vasyuk NP, Vedenicheva NP, Generalova VM, MArtyn GG, Nesterova AN. Hormonal complex plants and fungi. Kyiv, 2003. 186 p.
[62] Slovin JP, Bandurski RS, Cohen JD. Auxin. Biochemistry and molecular biology of plant hormones. Eds P. J. J. Hooykaas, M. A. Hall, K. R. Libbenga. Amsterdam: Elsevier Science BV, 1999: 115-40.
[63] Hall PJ. Indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry. 1980;19(10):2121–3.
[64] Domagalski W, Schulze A, Bandurski RS. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species). Plant Physiol. 1987;84:1107-13.
[65] Bialek K, Cohen JD. Isolation and Partial Characterization of the Major Amide-Linked Conjugate of Indole-3-Acetic Acid from Phaseolus vulgaris L. Plant Physiol. 1986;80(1):99-104.
[66] Walz A, Park S, Slovin JP, Ludwig-M?ller J, Momonoki YS, Cohen JD. A gene encoding a protein modified by the phytohormone indoleacetic acid. Proc Natl Acad Sci U S A. 2002;99(3):1718-23.
[67] Epstein E, Baldi BG, Cohen JD. Identification of Indole-3-Acetylglutamate from Seeds of Glycine max L. Plant Physiol. 1986;80(1):256-8.
[68] Michalczuk L, Bandurski RS. Enzymic synthesis of 1-O-indol-3-ylacetyl-beta-D-glucose and indol-3-ylacetyl-myo-inositol. Biochem J. 1982;207(2):273-81.
[69] Kesy JM, Bandurski RS. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase). Plant Physiol. 1990;94:1598-604.
[70] Kowalczyk S, Jakubowska A, Zielinska E, Bandurski RS. Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl-myo-inositol in immature endosperm of Zea mays. Physiol Plant. 2003;119(2):165–74.
[71] Davies RT, Goetz DH, Lasswell J, Anderson MN, Bartel B. IAR3 encodes an auxin conjugate hydrolase from Arabidopsis. Plant Cell. 1999;11(3):365-76.
[72] Klee HJ, Romano CP. The Roles of Phytohormones in Development as Studied in Transgenic Plants. Critical Reviews in Plant Sciences. 1994;13(4):311–24.
[73] Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL. The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes and Development. 1987;1(1):86–96.
[74] Cosgrove DJ. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997;9(7):1031-41.
[75] Ito M. Factors controlling cyclin B expression. Plant Mol Biol. 2000;43(5-6):677-90.
[76] Setiady YY, Sekine M, Hariguchi N, Yamamoto T, Kouchi H, Shinmyo A. Tobacco mitotic cyclins: cloning, characterization, gene expression and functional assay. Plant J. 1995;8(6):949-57.
[77] Hata S, Kouchi H, Suzuka I, Ishii T. Isolation and characterization of cDNA clones for plant cyclins. EMBO J. 1991;10(9):2681-8.
[78] Minshull J, Pines J, Golsteyn R, Standart N, Mackie S, Colman A, Blow J, Ruderman JV, Wu M, Hunt T. The role of cyclin synthesis, modification and destruction in the control of cell division. J Cell Sci Suppl. 1989;12:77-97.
[79] Kouchi H, Sekine M, Hata S. Distinct classes of mitotic cyclins are differentially expressed in the soybean shoot apex during the cell cycle. Plant Cell. 1995;7(8):1143-55.
[80] Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. Bioessays. 1995;17(6):471-80.
[81] Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inz? D, Jacobs T, Kouchi H, Rouz? P, Sauter M, Savour? A, Sorrell DA, Sundaresan V, Murray JA. Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol Biol. 1996;32(6):1003-18.
[82] Szarka S, Fitch M, Schaerer S, Moloney M. Classification and expression of a family of cyclin gene homologues in Brassica napus. Plant Mol Biol. 1995;27(2):263-75.
[83] Qin LX, Perennes C, Richard L, Bouvier-Durand M, Tr?hin C, Inz? D, Bergounioux C. G2-and early-M-specific expression of the NTCYC1 cyclin gene in Nicotiana tabacum cells. Plant Mol Biol. 1996;32(6):1093-101.
[84] Stals H, Casteels P, Van Montagu M, Inz? D. Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Plant Mol Biol. 2000;43(5-6):583-93.
[85] Ito M, Iwase M, Kodama H, Lavisse P, Komamine A, Nishihama R, Machida Y, Watanabe A. A novel cis-acting element in promoters of plant B-type cyclin genes activates M phase-specific transcription. Plant Cell. 1998;10(3):331-41.
[86] Dudits D, Magyar Z, Deak M, Meszaros T, Miskolezi P, Feher A, Brown S, Kondorosi E, Athanasiadis A, Pongor S, Bako L, Koner G, Gyorgyey J. Cyclin-dependent and calcium-dependent kinase families: response of cell division cycle to hormone and stress signals. Plant Cell Division. Eds D. Francis, D. Dudits, D. Inze. London: Portland press, 1998: 21-45.
[87] Mironov V V, De Veylder L, Van Montagu M, Inze D. Cyclin-dependent kinases and cell division in plants- the nexus . Plant Cell. 1999;11(4):509-22.
[88] Nigg EA. Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol. 1996;8(3):312-7.
[89] M?sz?ros T, Miskolczi P, Ayaydin F, Pettk?-Szandtner A, Peres A, Magyar Z, Horv?th GV, Bak? L, Feh?r A, Dudits D. Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells. Plant Mol Biol. 2000;43(5-6):595-605.
[90] Segers G, Rouze P, Van Montagu M, Inze D. Cyclin-dependent kinases in plants. Plant cell proliferation and its regulation in growth and development. Eds J. Bryant, J. Wiley-Chichester: UK, 1997;1-19.
[91] Joub?s J, Chevalier C, Dudits D, Heberle-Bors E, Inz? D, Umeda M, Renaudin JP. CDK-related protein kinases in plants. Plant Mol Biol. 2000;43(5-6):607-20.
[92] Joub?s J, Chevalier C. Endoreduplication in higher plants. Plant Mol Biol. 2000;43(5-6):735-45.
[93] Tr?hin C, Planchais S, Glab N, Perennes C, Tregear J, Bergounioux C. Cell cycle regulation by plant growth regulators: involvement of auxin and cytokinin in the re-entry of Petunia protoplasts into the cell cycle. Planta. 1998;206(2):215-24.
[94] Segers G, Gadisseur I, Bergounioux C, de Almeida Engler J, Jacqmard A, Van Montagu M, Inz? D. The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle. Plant J. 1996;10(4):601-12.
[95] Zhang K, Letham DS, John PC. Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta. 1996;200(1):2-12.
[96] Wheatley SP, Hinchcliffe EH, Glotzer M, Hyman AA, Sluder G, Wang Yl. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J Cell Biol. 1997;138(2):385-93.
[97] Hush J, Wu L, John PC, Hepler LH, Hepler PK. Plant mitosis promoting factor disassembles the microtubule preprophase band and accelerates prophase progression in Tradescantia. Cell Biol Int. 1996;20(4):275-87.
[98] Binarov? P, Dolezel J, Draber P, Heberle-Bors E, Strnad M, B?gre L. Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. Plant J. 1998;16(6):697-707.
[99] Colasanti J, Cho SO, Wick S, Sundaresan V. Localization of the Functional p34cdc2 Homolog of Maize in Root Tip and Stomatal Complex Cells: Association with Predicted Division Sites. Plant Cell. 1993;5(9):1101-1111.
[100] Asada T, Kuriyama R, Shibaoka H. TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci. 1997;110 ( Pt 2):179-89.
[101] Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B. A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol. 1997;17(3):1212-23.
[102] Durfee T, Feiler HS, Gruissem W. Retinoblastoma-related proteins in plants: homologues or orthologues of their metazoan counterparts? Plant Mol Biol. 2000;43(5-6):635-42.
[103] Belmont LD, Mitchison TJ. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell. 1996;84(4):623-31.
[104] Liu B, Cyr RJ, Palevitz BA. A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell. 1996;8(1):119-132.
[105] Vos JW, Safadi F, Reddy AS, Hepler PK. The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell. 2000;12(6):979-90.
[106] Asada T, Collings D. Molecular motors in higher plants. Trends Plant Sci. 1997;2(1):29–37.
[107] Zimmerman W, Sparks CA, Doxsey SJ. Amorphous no longer: the centrosome comes into focus. Curr Opin Cell Biol. 1999;11(1):122-8.
[108] Dictenberg JB, Zimmerman W, Sparks CA, Young A, Vidair C, Zheng Y, Carrington W, Fay FS, Doxsey SJ. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J Cell Biol. 1998;141(1):163-74.
[109] Durso NA, Cyr RJ. A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1a. Plant Cell. 1994;6(6):893.
[110] Vantard M, Cowling R, Delich?re C. Cell cycle regulation of the microtubular cytoskeleton. Plant Mol Biol. 2000;43(5-6):691-703.
[111] Cai G, Romagnoli S, Moscatelli A, Cresti M. Evidence for microtubule-based organelle transport in the pollen tube. Cell biology of plant and fungal tip growth. Eds A. Geitmann, M. Cresti. Amsterdam: IOS press, 2001:1-12.
[112] Moscatelli A, Cai G, Cresti M. Dynein related polypeptides during pollen tube growth. Cell biology of plant and fungal tip growth. Eds A. Geitmann, M. Cresti. Amsterdam: IOS press, 2001:13-26.
[113] Vidali L, Holdaway-Clarke M, Hepler PK. The calcium. cytoskeleton connection in pollen tube growth. Cell biology of plant and fungal tip growth. Eds A. Geitmann, M. Cresti. Amsterdam: IOS press, 2001: 27-35.
[114] Heath B, Skalamera D. Regulation of tip morphogenesis by the cytoskeleton and calcium ions. Cell biology of plant and fungal tip growth. Eds A. Geitmann, M. Cresti. Amsterdam: IOS press, 2001: 37-53.
[115] Yokota E, Muto S, Shimmen T. Inhibitory regulation of higher-plant myosin by Ca2+ ions . Plant Physiol. 1999;119(1):231-40.
[116] Yokota E, Muto S, Shimmen T. Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiol. 2000;123(2):645-54.
[117] Mendenhall MD, Hodge AE. Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1998;62(4):1191-243.
[118] Goverse A, de Engler JA, Verhees J, van der Krol S, Helder JH, Gheysen G. Cell cycle activation by plant parasitic nematodes. Plant Mol Biol. 2000;43(5-6):747-61.
[119] Tassan JP, Jaquenoud M, L?opold P, Schultz SJ, Nigg EA. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A. 1995;92(19):8871-5.
[120] Burssens S, Van Montagu M, Inz? D. The cell cycle in Arabidopsis. Plant Physiology and Biochemistry. 1998;36(1-2):9–19.
[121] John P, Zhang K, Dong C, Diederich L, Wightman F. p34 cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin . Australian Journal of Plant Physiology. 1993;20(5):503-26.
[122] Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC. ICK1, a cyclin-dependent protein kinase inhibitor fromArabidopsis thalianainteracts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J. 1998;15(4):501–10.
[123] Redig P, Shaul O, Inze D, Van Montagu M, Van Onckelen H. Levels of endogenous cytokinins, indole-3-acetic acid and abscisic acid during the cell cycle of synchronized tobacco BY-2 cells. FEBS Lett. 1996;391(1-2):175-80.
[124] Doerner P, J?rgensen JE, You R, Steppuhn J, Lamb C. Control of root growth and development by cyclin expression. Nature. 1996;380(6574):520-3.
[125] Chung SK, Parish RW. Studies on the promoter of the Arabidopsis thaliana cdc2a gene. FEBS Lett. 1995;362(2):215-9.
[126] B?gre L, Meskiene I, Heberle-Bors E, Hirt H. Stressing the role of MAP kinases in mitogenic stimulation. Plant Mol Biol. 2000;43(5-6):705-18.
[127] K?ltz D. Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol. 1998;46(5):571-88.
[128] Hirt H. MAP kinases in plant signal transduction. Results Probl Cell Differ. 2000;27:1-9.
[129] K?ltz D. Phylogenetic and functional classification of mitogen- and stress-activated protein kinases. J Mol Evol. 1998;46(5):571-88.
[130] Mizoguchi T, Gotoh Y, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, et al. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 1994;5(1):111–22.
[131] Morris PC, Guerrier D, Leung J, Giraudat J. Cloning and characterisation of MEK1, an Arabidopsis gene encoding a homologue of MAP kinase kinase. Plant Mol Biol. 1997;35(6):1057-64.
[132] Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H. Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A. 1996;93(20):11274-9.
[133] Hunter T. Signaling--2000 and beyond. Cell. 2000;100(1):113-27.
[134] Decroocq-Ferrant V, Decroocq S, Van Went J, Schmidt E, Kreis M. A homologue of the MAP/ERK family of protein kinase genes is expressed in vegetative and in female reproductive organs of Petunia hybrida. Plant Mol Biol. 1995;27(2):339-50.
[135] Romeis T, Piedras P, Zhang S, Klessig DF, Hirt H, Jones JD. Rapid Avr9- and Cf-9 -dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell. 1999;11(2):273-87.
[136] Ligterink W, Kroj T, zur Nieden U, Hirt H, Scheel D. Receptor-mediated activation of a MAP kinase in pathogen defense of plants. Science. 1997;276(5321):2054-7.
[137] Kovtun Y, Chiu WL, Tena G, Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A. 2000;97(6):2940-5.
[138] Seo S, Okamoto M, Seto H, Ishizuka K, Sano H, Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995;270(5244):1988-92.
[139] Nishida E, Gotoh Y. Mitogen-activated protein kinase and cytoskeleton in mitogenic signal transduction. Int Rev Cytol. 1992;138:211-38.
[140] Bogre L, Calderini O, Meskiene I, Binarova P. Regulation of the cell division and the cytoskeleton by mitogen-activated ptotein kinases in higher plants. Results Probl. Cell. Differ. 2000. 27: 95-117.
[141] Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH. Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci U S A. 1995;92(19):8881-5.
[142] Machida Y, Nishihama R, Kitakura S. Progress in studies of plant homologs of mitogen-activated protein (map) kinase and potential upstream components in kinase cascades. Critical Reviews in Plant Sciences. 1997;16(6):481–96.
[143] Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol. 1999;11(2):211-8.
[144] Hamal A, Jouannic S, Leprince A-S, Kreis M, Henry Y. Molecular characterisation and expression of an Arabidopsis thaliana L. MAP kinase kinase cDNA, AtMAP2K?. Plant Sci. 1999;140(1):41–52.
[145] Ichimura K. Molecular cloning and characterization of three cDNAs encoding putative mitogen-activated protein kinase kinases (MAPKKs) in Arabidopsis thaliana. DNA Res. 1998;5(6):341–8.
[146] Jouannic S, Hamal A, Leprince AS, Tregear JW, Kreis M, Henry Y. Characterisation of novel plant genes encoding MEKK/STE11 and RAF-related protein kinases. Gene. 1999;229(1-2):171-81.
[147] Leprince A, Jouannic S, Hamal A, Kreis M, Henry Y. Molecular characterisation of plant cDNAs BnMAP4Kalpha1 and BnMAP4Kalpha2 belonging to the GCK/SPS1 subfamily of MAP kinase kinase kinase kinase. Biochim Biophys Acta. 1999;1444(1):1-13.
[148] Rommel C, Hafen E. Ras--a versatile cellular switch. Curr Opin Genet Dev. 1998;8(4):412-8.
[149] Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276(5320):1865-8.
[150] Mockaitis K, Howell SH. Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J. 2000;24(6):785-96.
[151] Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993;72(3):427-41.
[152] Marcote MJ, Carbonell J. Transient expression of a pea MAP kinase gene induced by gibberellic acid and 6-benzyladenine in unpollinated pea ovaries. Plant Mol Biol. 2000;44(2):177-86.
[153] Solano R, Ecker JR. Ethylene gas: perception, signaling and response. Curr Opin Plant Biol. 1998;1(5):393-8.
[154] Knetsch M, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S. Abscisic Acid Induces Mitogen-Activated Protein Kinase Activation in Barley Aleurone Protoplasts. Plant Cell. 1996;8(6):1061-1067.
[155] Patton EE, Willems AR, Tyers M. Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends Genet. 1998;14(6):236-43.
[156] Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 1999;13(13):1678-91.
[157] Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234(4774):364-8.
[158] Hobbie L, Estelle M. The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995;7(2):211-20.
[159] Nakashima M, Hirano K, Nakashima S, Banno H, Nishihama R, Machida Y. The expression pattern of the gene for NPK1 protein kinase related to mitogen-activated protein kinase kinase kinase (MAPKKK) in a tobacco plant: correlation with cell proliferation. Plant Cell Physiol. 1998;39(7):690-700.
[160] Nishihama R, Machida Y. The MAP kinase cascade that includes MAPKKK-related protein kinase NPK1 controls a mitotic proces in plant cells. Results Probl Cell Differ. 2000;27:119-30.
[161] Monroe-Augustus M, Zolman BK, Bartel B. IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell. 2003;15(12):2979-91.
[162] Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM. Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure. 2003;11(2):155-64.
[163] Showalter AM. Structure and function of plant cell wall proteins. Plant Cell. 1993;5(1):9-23.
[164] Pauly M, Albersheim P, Darvill A, York WS. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J. 1999;20(6):629-39.
[165] Willats WG, Steele-King CG, Marcus SE, Knox JP. Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J. 1999;20(6):619-28.
[166] Levy S, Staehelin LA. Synthesis, assembly and function of plant cell wall macromolecules. Curr Opin Cell Biol. 1992;4(5):856-62.
[167] Hadfield KA, Bennett AB. Polygalacturonases: many genes in search of a function. Plant Physiol. 1998;117(2):337-43.
[168] Heyn AN. Molecular basis of auxin-regulated extension growth and role of dextranase. Proc Natl Acad Sci U S A. 1981;78(11):6608-12.
[169] Potter I, Fry SC. Xyloglucan endotransglycosylase activity in pea internodes. Effects of applied gibberellic acid. Plant Physiol. 1993;103(1):235-41.
[170] Delmer D. Cellulose Biosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1987;38(1):259–90.
[171] Delmer DP, Solomon M, Read SM. Direct Photolabeling with [P]UDP-Glucose for Identification of a Subunit of Cotton Fiber Callose Synthase. Plant Physiol. 1991;95(2):556-63.
[172] Cyr RJ. Microtubules in plant morphogenesis: role of the cortical array. Annu Rev Cell Biol. 1994;10:153-80.
[173] Hussey PJ, Silflow CD. Tubulin gene expression in higher plants. The cytoskeletal basis of plant growth and form. Ed. S. W. Lloyd. San Diego: Acad, press, 1991: 15-28.
[174] Blume Ya, Smertenko A, Ostapets NN, Viklicky V, Draber P. Post-translational modifications of plant tubulin. Cell Biol. Int. 1998;21(12):918-20.
[175] Cyr RJ. Calcium. calmodulin affects microtubule stability in lysed protoplasts. J Cell Sci. 1991; 100:311-7.
[176] Biddings TH, Staehelin LA. Microtubule-mediated control of microfibril deposition: a re-examination of the hypothesis. The cytoskeletal basis of plant growth and form. Ed. C. W. Lloyd. San Diego: Acad, press, 1991: 85-100.
[177] Lee Y, Kende H. Expression of beta-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol. 2001;127(2):645-54.
[178] Catal? C, Rose JK, Bennett AB. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol. 2000;122(2):527-34.
[179] Caderas D, Muster M, Vogler H, Mandel T, Rose JK, McQueen-Mason S, Kuhlemeier C. Limited correlation between expansin gene expression and elongation growth rate. Plant Physiol. 2000;123(4):1399-414.
[180] Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC. Cell wall architecture of the elongating maize coleoptile. Plant Physiol. 2001;127(2):551-65.
[181] Catal? C, Rose JK, York WS, Albersheim P, Darvill AG, Bennett AB. Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls. Plant Physiol. 2001;127(3):1180-92.
[182] Catal? C, Rose JK, Bennett AB. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol. 2000;122(2):527-34.
[183] Schunmann PHD, Smith RC, Lang V, Matthews PR, Chandler PM. Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant Cell Environ. 1997;20(12):1439–50.
[184] Zurek DM, Clouse SD. Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max L.) epicotyls. Plant Physiol. 1994;104(1):161-70.
[185] Barrachina C, Lorences EP. Xyloglucan endotransglycosylase activity in pine hypocotyls. Intracellular localization and relationship with endogenous growth. Physiol Plant. 1998;102(1):55–60.
[186] Schr?der R, Atkinson RG, Langenk?mper G, Redgwell RJ. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta. 1998;204(2):242-51.
[187] Arrowsmith DA, de Silva J. Characterisation of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol Biol. 1995;28(3):391-403.
[188] Koka CV, Cerny RE, Gardner RG, Noguchi T, Fujioka S, Takatsuto S, Yoshida S, Clouse SD. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response. Plant Physiol. 2000;122(1):85-98.
[189] Campbell P, Braam J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 1999;4(9):361-6.
[190] Kotake T, Nakagawa N, Takeda K, Sakurai N. Auxin-induced elongation growth and expressions of cell wall-bound exo- and endo-beta-glucanases in barley coleoptiles. Plant Cell Physiol. 2000;41(11):1272-8.
[191] Molhoj M, Ulvskov P, Dal Degan F. Characterization of a functional soluble form of a brassica napus membrane-anchored endo-1,4-beta -glucanase heterologously expressed in Pichia pastoris. Plant Physiology. 2001;127(2):674–84.
[192] Kim JB, Olek AT, Carpita NC. Cell wall and membrane-associated exo-beta-D-glucanases from developing maize seedlings. Plant Physiol. 2000;123(2):471-86.
[193] Yuan S, Wu Y, Cosgrove DJ. A fungal endoglucanase with plant cell wall extension activity. Plant Physiol. 2001;127(1):324-33.
[194] Monzavi-Karbessi B, Goldenkov IV, Darbinyan NS, Kobets NS, Vasilevko VS, Piruzian ES. Efficient bacterial secretion. L-glucanase intercellular space of transgenic tobacco plants Nicotiana tabacum. Mol Genet. 1998; 34:475-479.
[195] Im KH, Cosgrove DJ, Jones AM. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 2000;123(2):463-70.
[196] Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321-6.
[197] Whitney SE, Gidley MJ, McQueen-Mason SJ. Probing expansin action using cellulose/hemicellulose composites. Plant J. 2000;22(4):327-34.
[198] Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001;127(4):1361-6.
[199] Lane DR, Wiedemeier A, Peng L, H?fte H, Vernhettes S, Desprez T, Hocart CH, Birch RJ, Baskin TI, Burn JE, Arioli T, Betzner AS, Williamson RE. Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-beta-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol. 2001;126(1):278-88.
[200] Zuo J, Niu QW, Nishizawa N, Wu Y, Kost B, Chua NH. KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell. 2000;12(7):1137-52.
[201] M?lh?j M, J?rgensen B, Ulvskov P, Borkhardt B. Two Arabidopsis thaliana genes, KOR2 and KOR3, which encode membrane-anchored endo-1,4-beta-D-glucanases, are differentially expressed in developing leaf trichomes and their support cells. Plant Mol Biol. 2001;46(3):263-75.
[202] Brummell DA, Catala C, Lashbrook CC, Bennett AB. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci U S A. 1997;94(9):4794-9.
[203] Peng L, Hocart CH, Redmond JW, Williamson RE. Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta. 2000;211(3):406-14.
[204] Faik A, Price NJ, Raikhel NV, Keegstra K. An Arabidopsis gene encoding an alpha-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci U S A. 2002;99(11):7797-802.
[205] Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P. Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science. 2004;303(5656):363-6.
[206] Keegstra K, Walton J., Wilkerson C. Cell wall metabolism. MSU-DOE Plant Research Laboratory. Thirty-Eighth Annu. Rept. USA. New York, 2003: 101-109.
[207] Sarria R, Wagner TA, O’Neill MA, Faik A, Wilkerson CG, Keegstra K, et al. Characterization of a family of Arabidopsis genes related to xyloglucan fucosyltransferase1. Plant Physiology. 2001;127(4):1595–606.
[208] Perrin RM. Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiology. 2003;132(2):768–78.
[209] Faik A, Bar-Peled M, DeRocher AE, Zeng W, Perrin RM, Wilkerson C, Raikhel NV, Keegstra K. Biochemical characterization and molecular cloning of an alpha-1,2-fucosyltransferase that catalyzes the last step of cell wall xyloglucan biosynthesis in pea. J Biol Chem. 2000;275(20):15082-9.
[210] Edwards ME, Dickson CA, Chengappa S, Sidebottom C, Gidley MJ, Reid JSG. Molecular characterisation of a membrane-bound galactosyltransferase of plant cell wall matrix polysaccharide biosynthesis. Plant J. 1999;19(6):691–7.
[211] Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J, Shoue DA, Carpita NC, Reiter WD. The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell. 2003;15(7):1662-70.
[212] Keegstra K, Raikhel N. Plant glycosyltransferases. Curr Opin Plant Biol. 2001;4(3):219-24.
[213] Walton JD, Ray PM. Inhibition by light of growth and Golgi-localized glucan synthetase in the maize mesocotyl. Planta. 1982;156(4):302-8.
[214] Walton JD, Ray PM. Auxin controls Golgi-localized glucan synthetase activity in the maize mesocotyl. Planta. 1982;156(4):309-13.
[215] Ahn JH, Choi Y, Kwon YM, Kim SG, Choi YD, Lee JS. A novel extensin gene encoding a hydroxyproline-rich glycoprotein requires sucrose for its wound-inducible expression in transgenic plants. Plant Cell. 1996;8(9):1477-90.
[216] Jackson PA, Galinha CI, Pereira CS, Fortunato A, Soares NC, Am?ncio SB, Pinto Ricardo CP. Rapid deposition of extensin during the elicitation of grapevine callus cultures is specifically catalyzed by a 40-kilodalton peroxidase. Plant Physiol. 2001;127(3):1065-76.
[217] Magliano T. In vitro cross-linking of extensin precursors by mustard extracellular isoforms of peroxidase that respond either to phytochrome or to wounding. J Exp Bot. 1998;49(326):1491–9.
[218] Brisson LF, Tenhaken R, Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994;6(12):1703-1712.
[219] Krasnobaev NN, Borodenko LI, Gordeenkov AV, Kalibernaya ZV, Guskov AV, Zhiznevskaya GYa, Izmailov SU. IUK influence on isoenzyme spectrum of peroxidases in induced root formation cuttings to the beans. Tez. rep. IV Intern. Conf. "Regulators of plant growth and development". M.: Izd Mos Gos agr Univ. , 1997:101-2.
[220] Keabeli VI. Plant growth regulators. Plant physiology in the service of the USSR Food Programme. V.: Znanie, 1988;18-31.