Biopolym. Cell. 2005; 21(2):91-106.
Огляди
Кондуктометричні ферментні біосенсори: теорія, технологія, застосування
1Дзядевич С. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Розглянуто теоретичні основи кондуктометричного методу вимірювань та можливість його використання для реєстрації перебігу ферментативних процесів, що проілюстровано відповідними даними різних дослідників. Наведено приклади багатьох кондуктометричних перетворювачів, які використовують при створенні біосенсорів, засоби іммобілізації активного матеріалу на їхню поверхню та схеми і методики вимірювань. Описано деякі моделі кондуктометричних фермент­ них біосенсорів, обговорено їхні переваги і недоліки, а також перспективи подальшого розвитку.
Keywords: кондуктометричний біосенсор, імпеданс, провідність, фермент

References

[1] Coulet PR. What is a biosensor? Biosensor principles and application. Eds L. J. Blum, P. R. Coulet New York: Marcel Dekker, 1991:. 1–6.
[2] Thevenot DR, T?th K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification (Technical report). Pure Appl Chem. 1999; 71(12):2333—2348.
[3] Hall EA. Recent progress in biosensor development. Int J Biochem. 1988;20(4):357-62.
[4] Mizutani F, Yamanaka T, Tanabe Y, Tsuda K. An enzyme electrode forl-lactate with a chemically-amplified response. Anal Chim Acta. 1985;177:153–66.
[5] Bartlett PN, Whitaker RG. Strategies for the development of amperometric enzyme electrodes. Biosensors. 1987;3(6):359–79.
[6] Morrison LE. Time-resolved detection of energy transfer: theory and application to immunoassays. Anal Biochem. 1988;174(1):101-20.
[7] Lee HA, Morgan MRA. Food immunoassays: Applications of polyclonal, monoclonal and recombinant antibodies. Trends Food Sci Technol . 1993;4(5):129–34.
[8] Buch RM, Rechnitz GA. Neuronal biosensors. Anal Chem. 1989;61(8):533A-542A.
[9] Lewis R. Biological Recognition Repackaged. BioScience . JSTOR; 1989;39(5):288–91.
[10] Wiseman A. Comparison of use of immobilized cells and immobilized enzymes for bioanalysis: Considerations in determination of ethanol. Trends Anal Chem. 1992;11(8):303–6.
[11] Karube L, Sode K. Microbial sensors for process and environmental control. Bioinstrumentation and biosensors. Ed. D. L. Wise. New York: Marcel Dekker Inc., 1991: 149-60.
[12] Dumschat C, M?ller H, Stein K, Schwedt G. Pesticide-sensitive ISFET based on enzyme inhibition. Analytica Chimica Acta. 1991;252(1-2):7–9.
[13] Bergveld P. Thirty years of ISFETOLOGY. What happened in the past 30 years and what may happen in the next 30 years?. Sensors and Actuators B. 2003; 88:1-20.
[14] Jossinet J, McAdams ET. The sin-electrode interface impedance. Innov Tech Biol Med. 1991; 12(1):21-31.
[15] Macdonald JR. Impedance/admittance response of a binary electrolyte. Electrochimica Acta. 1992;37(6):1007–14.
[16] Lorenzo E, Pariente F, Hern?ndez L, Tobalina F, Darder M, Wu Q, Maskus M, Abru?a HD. Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron. 1998;13(3-4):319-32.
[17] Dzyadevych SV. Amperometric biosensors. Key work principles and features of transducers of different generations. Biopolym Cell. 2002; 18(1):13-25.
[18] Kelt DB, Davey CL. Conductimetric and impediometric devices. Biosensors. A practical approach. Ed. A. F. Gass. Oxford: IRL Press, 1990: 125-53.
[19] Cullen DC, Sethi RS, Lowe CR. Multi-analyte miniature conductance biosensor. Anal Chim Acta. 1990;231:33–40.
[20] Fawcett NC, Evans JA, Chien L-C, Flowers N. Nucleic Acid Hybridization Detected by Piezoelectric Resonance. Anal Lett. 1988;21(7):1099–114.
[21] Roef P. Attention focuses on optical fibre biosensors. Sensor Rev. 1987;7(3):127–32.
[22] Smardzewski RR. Multi-element optical waveguide sensor: General concept and design. Talanta. 1988;35(2):95-101.
[23] Luong JHT, Mulchandani A, Guibault GG. Developments and application of biosensors. Tibtechnology. 1988; 6: 310-6.
[24] Dittmar A, Pauchard T, Delhomme G, Vernet-Maury E. A thermal conductivity sensor for the measurement of skin blood flow. Sens Actuat B: Chem. 1992;7(1-3):327–31.
[25] Dzyadevych SV. Biosensors based on ion-selective field effect transistors: theory, technology, practice. Biopolym Cell. 2004; 20(1-2):7-16.
[26] Dzyadevych SV. Amperometric biosensors. Modern technologies and commercial variants. Biopolym Cell. 2002; 18(5):363-76.
[27] Dziadevych SV, Soldatkin OP. [A conductometric method of measuring enzymatic catalysis]. Ukr Biokhim Zh. 1994;66(4):30-42.
[28] Hall E. Biosensors. Cambridge: Open Univ. press, 1991. 351 p.
[29] Tran Minh C. Biosensors. London: Chapman & Hall, 1993. 236 p.
[30] Kress-Rogers E. Handbook of biosensors and electronic noses: medicine, food, and environment. New York: CRC press, 1997. 720 p.
[31] Glass RS, Perone SP, Ciarlo DR. Application of information theory to electroanalytical measurements using a multielement, microelectrode array. Anal Chem. 1990;62(18):1914–8.
[32] Hoffheins BS, Lauf RJ, Siegel MW. Intelligent Thick?film Gas Sensor. Microelectronics International. 1987;4(3):8–12.
[33] Alder JF, Fielden PR, Clark AJ. Simultaneous conductivity and permittivity detector with a single cell for liquid chromatography. Anal Chem. 1984;56(6):985–8.
[34] Dorokhova EN, Prokhorova GV. Analytical chemistry. Physico-chemical methods of analysis. M.: Vysch Shkola, 1991. 256 p.
[35] Gopel W, Jones TA, Kleitz M, Lundstrom J, Seiyama T. Conductometry. Sensors. A Comprehensive Survey. Eds W. Gopel, J. Hesse, J. N. Zemel. Weinheim: VCII Verlagsgesellschaft, 1991; Vol. 2, pt I: 314-37.
[36] Kelt DB. The principles and potential of electrical admittance spectroscopy: an introduction. Biosensors: Fundamentals and Applications. Eds A. P. F. Turner, I. Karube, G. S. Wilson. Oxford: Oxford Univ. press, 1987: 427-68.
[37] Cammann K. Das Arbeiten Mit Ionenselektiven Elektroden. Springer-Verlag Berlin Heidelberd 1973, 1977
[38] Vetter KJ. Elektrochemische Kinetik. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1961
[39] McAdams ET, Jossinet J. Electrode-electrolyte impedance and polarisation. Innov. Tech Biol Med. 1991; 12(1): 11-20.
[40] Antropov LI. Theoretical electrochemistry. M.: Vysch Shkola, 1984. 519 p.
[41] Watson LD, Maynard P, Cullen DC, Sethi RS, Brettle J, Lowe CR. A microelectronic conductimetric biosensor. Biosensors. 1987-1988;3(2):101-15.
[42] Kissinger PT, Heineman WR. Laboratory techniques in electroanalytical chemistry. New York: Marcel Dekker Inc., 1984. p.
[43] Dzyadevich SV, Shul'ga AA, Patskovsky SV, Arkhipova VN, Soldatkin AP, Strikha VI. Thin-film conductometric transducer for enzyme biosensors. Elektrokhimiia. 1994; 30(8):982-7.
[44] Olthuis W, Volanschi A, Bomer JG, Bergveld P. A new probe for measuring electrolytic conductance. Sens Actuators B Chem. 1993;13(1-3):230–3.
[45] Olthuis W, Smith A, van der Zalm RAJ, Bergveld P. New operational modes for the Ta2O5-based electrolyte conductance cell. Sens Actuators B Chem. 1994;18(1-3):65–8.
[46] Dzyadevych SV, Shulga AA, Patskovsky SV, Arkhipova VN, Soldatkin AP, Strikha VI. Thin-films conductometric transducer for enzyme biosensors. Rus J Electrochem. 1994; 30(8):887-91.
[47] Weimar U, G?pel W. A.c. measurements on tin oxide sensors to improve selectivities and sensitivities. Sens Actuators B: Chem 1995;26(1-3):13–8.
[48] Sheppard NF, Tucker RC, Wu C. Electrical conductivity measurements using microfabricated interdigitated electrodes. Anal Chem. 1993;65(9):1199–202.
[49] Lee W-Y, Kim S-R, Kim T-H, Lee KS, Shin M-C, Park J-K. Sol–gel-derived thick-film conductometric biosensor for urea determination in serum. Anal Chim Acta. 2000;404(2):195–203.
[50] Jacobs P, Suls J, Sansen W. Performance of a planar differential-conductivity sensor for urea. Sens Actuators B: Chem. 1994;20(2-3):193–8.
[51] Hintsche R, M?ller B, Dransfeld I, Wollenberger U, Scheller F, Hoffmann B. Chip biosensors on thin-film metal electrodes. Sens Actuators B: Chem. 1991;4(3-4):287–91.
[52] Trebbe U, Niggemann M, Cammann K, Fiaccabrino G, Koudelka-Hep M, Dzyadevich S, et al. A new calcium-sensor based on ion-selective conductometric microsensors – membranes and features. Fresenius’ J Anal Chem. 2001;371(6):734–9.
[53] Mikkelsen SR, Rechnitz GA. Conductometric transducers for enzyme-based biosensors. Anal Chem. 1989;61(15):1737-42.
[54] Bilitewski U, Drewes W, Schmid RD. Thick film biosensors for urea. Sens Actuators B: Chem. 1992;7(1-3):321–6.
[55] McNeil CJ, Athey D, Ball M, Ho WO, Krause S, Armstrong RD, et al. Electrochemical Sensors Based on Impedance Measurement of Enzyme-Catalyzed Polymer Dissolution: Theory and Applications. Anal Chem. 1995;67(21):3928–35.
[56] Sergeyeva TA, Lavrik NV, Rachkov AE, Kazantseva ZI, Piletsky SA, El’skaya AV. Hydrogen peroxide – sensitive enzyme sensor based on phthalocyanine thin film. Anal Chim Acta. 1999;391(3):289–97.
[57] Endres H-E, Drost S. Optimization of the geometry of gas-sensitive interdigital capacitors. Sens Actuators B: Chem. 1991;4(1-2):95–8.
[58] Ho WO, Krause S, McNeil CJ, Pritchard JA, Armstrong RD, Athey D, et al. Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation. Anal Chem. 1999;71(10):1940–6.
[59] Chin W, Kroontje W. Conductivity Method for Determination of Urea. Anal Chem. 1961;33(12):1757–60.
[60] Bourrelly P, Bourrelly-Durand V. Méthode d'etude par conductometric différentielle de la cinétique de Phydrolise enzymatique de l'uree. J Chem Phys. 1965; 65: 673-7.
[61] Andreev VS, Rosengart VI, Torubarov VA. [Recording the kinetics of enzyme reactions by the high-frequency method]. Ukr Biokhim Zh. 1965;37(6):920-6. .
[62] Andreev VS, Bashtanov AV. Differential conductometric device for measuring physical and chemical processes. Zavodskaya Laboratoriia. 1968; 34(12):1546-8.
[63] Hanss M, Rey A. [Use of conductometry in the study of enzymic reactions. Urea-urease system]. Biochim Biophys Acta. 1971;227(3):630-8.
[64] Lawrence AJ. Conductimetric enzyme assays. Eur J Biochem. 1971;18(2):221-5.
[65] Lawrence AJ, Moores GR. Conductimetry in enzyme studies. Eur J Biochem. 1972;24(3):538-46.
[66] Besson C, Vessillier S, Gonzales T, Saulnier J, Wallach J. Conductimetric assay of pyroglutamyl peptidase activity. Anal Chim Acta. 1994;294(3):305–9.
[67] Shul'ga AA, Soldatkin AP, El'skaya AV, Dzyadevich SV, Patskovsky SV, Strikha VI. Thin-film conductometric biosensors for glucose and urea determination. Biosens Bioelectron. 1994;9(3):217-23.
[68] Shulga AA, Dzyadevich SV, Soldatkin AP, Patskovsky SV, Strikha VI. Conductometrie biosensors for glucose and urea based on microfabricated thin-film interdigitated arrayelectrodes. Biol Ital. 1993; 23(6):40-5.
[69] Shul'ga AA, Dziadevich SV, Soldatkin AP, Patskovskiy SV, Starodub NF, Strikha VI, El'skaya AV. The thin film Conductometric enzimobiosensor for determination of glucose and urea in the blood. Elektrokhimiya. 1993; 29(8):998-1002.
[70] Dziadevich SV, Soldatkin AP, Shul'ga AA, Strikha VI, El'skaya AV. Conductometric biosensor for the determination of organophosphorus pesticides. Zh anal Khim. 1994; 49(8):874-8.
[71] Yon Hin BFY, Sethi RS, Lowe CR. Multi-analyte microelectronic biosensors. Sens Actuators B: Chemical. 1990;1(1-6):550–4.
[72] Nyamsi Hendji AM, Jaffrezic-Renault N, Martelet C, Shul’ga AA, Dzydevich SV, Soldatkin AP, et al. Enzyme biosensor based on a micromachined interdigitated conductometric transducer: application to the detection of urea, glucose, acetyl- andbutyrylcholine chlordes. Sens Actuators B: Chem. 1994;21(2):123–9.
[73] Dzydevich SV, Shu?ga AA, Soldatkin AP, Hendji AMN, Jaffrezic-Renault N, Martelet C. Conductometric biosensors based on cholinesterases for sensitive detection of pesticides. Electroanalysis. 1994;6(9):752–8.
[74] Zhylyak GA, Dzyadevich SV, Korpan YI, Soldatkin AP, El’skaya AV. Application of urease conductometric biosensor for heavy-metal ion determination. Sens Actuators B: Chem. 1995;24(1-3):145–8.
[75] Dzyadevich SV, Zhylyak GA, Soldatkin AP, El'skaya AV. Conductometric urease microbiosensor based on thin-film interdigitated electrodes for urea determination. Biopolym Cell. 1996; 12(1):53-7.
[76] Arkhipova VN, Dziadevich SV, Soldatkin AP, El'skaia AV. [Enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistor]. Ukr Biokhim Zh. 1996;68(1):26-31.
[77] Castillo-Ortega MM, Rodriguez DE, Encinas JC, Plascencia M, M?ndez-Velarde FA, Olayo R. Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline–poly(n-butyl methacrylate) composites. Sens Actuators B: Chemical. 2002;85(1-2):19–25.
[78] Limbut W. Comparative study of controlled pore glass, silica gel and Poraver® for the immobilization of urease to determine urea in a flow injection conductimetric biosensor system. Biosensors and Bioelectronics . Elsevier BV; 2004;19(8):813–21.
[79] Steinschaden A, Adamovic D, Jobst G, Glatz R, Urban G. Miniaturised thin film conductometric biosensors with high dynamic range and high sensitivity. Sens Actuators B: Chem. 1997;44(1-3):365–9.
[80] Lee WY, Lee KS, Kim TH, Shin MC, Park JK. Microfabricated conductometric urea biosensor based on sol-gel immobilized urease. Electroanalysis. 2000; 12: 78-82.
[81] Sheppard NF, Mears DJ, Guiseppi-Elie A. Model of an immobilized enzyme conductimetric urea biosensor. Biosens Bioelectron. 1996;11(10):967–79.
[82] Gallardo Soto AM, Jaffari SA, Bone S. Characterisation and optimisation of AC conductimetric biosensors. Biosens Bioelectron. 2001;16(1-2):23-9.
[83] Jin P, Yamaguchi A, Oi FA, Matsuo S, Tan J, Misawa H. Glucose sensing based on interdigitated array microelectrode. Anal Sci. 2001;17(7):841-6.
[84] Senillou A, Jaffrezic N, Martelet C, Cosnier S. A laponite clay-poly(pyrrole–pyridinium) matrix for the fabrication of conductimetric microbiosensors. Anal Chim Acta. 1999;401(1-2):117–24.
[85] Dziadevich SV, Korpan IaI, Soldatkin AP, Shul'ga AA, Strikha VI, El'skaia AV. [Use of conductometric microsensors for studying kinetic parameters of enzymes]. Ukr Biokhim Zh. 1993;65(5):47-53.
[86] Soldatkin AP, El’skaya AV, Shul’ga AA, Jdanova AS, Dzyadevich SV, Jaffrezic-Renault N, et al. Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range. Anal Chim Acta. 1994;288(3):197–203.
[87] Dziadevych SV, Soldatkin OP, Arkhypova VM, Shulha OA, Iel?ka HV. [A conductometric enzymatic glucose sensor. A search for ways to improve analytical characteristics]. Ukr Biokhim Zh. 1995;67(6):53-9.
[88] Biloivan OA, Dziadevich SV, Soldatkin OP, Starodub MF, Iel'ska GV. [Development of enzyme biosensor based on trypsin and conductometric thin-film electrodes for protein and artificial substrates determination]. Ukr Biokhim Zh. 1997;69(2):14-8.
[89] Soldatkin AP, Dzyadevich SV, Korpan YI, Arkhipova VN, Zhylyak GA, Piletsky SA, Sergeeva TA, Panasyuk TL, El'skaya AV. Biosensors based on conductometric detection. Biopolym Cell. 1998; 14(4):268-76.
[90] Dzyadevich SV, Arkhipova VN, Soldatkin AP, El’skaya AV, Shul’ga AA. Glucose conductometric biosensor with potassium hexacyanoferrate(III) as an oxidizing agent. Anal Chim Acta. 1998;374(1):11–8.
[91] Arkhipova VN, Dzyadevich SV, Schuvailo ON, Soldatkin AP, Elskaya AV., Jaffrezic-Renault N, Jaffrezic H, Martelet C. Conception of multibiosensor for determination of different toxic substances based on the enzyme inhibitor analysis. Biopolym Cell. 2001; 17(1):70-7.
[92] Dzyadevych SV, Arkhypova VN, Korpan YI, El'skaya AV, Soldatkin AP, Jaffrezic-Renault N, Martelet C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Analyt Chim Acta. 2001; 445(1):47–55.
[93] Arkhypova V. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2001;55(5):919–27.
[94] Dzyadevych SV, Arkhypova VN, Elskaya AV, Jaffrezic-Renault N, Martelet C, Soldatkin AP. Conductometric enzyme biosensors for substrates or inhibitors analysis. Curr Top Analyt Chem. 2001; 2: 179-86.
[95] Dzyadevych SV, Soldatkin AP, Chovelon J-M. Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors. Analytica Chimica Acta . 2002;459(1):33–41.
[96] Dzyadevych SV, Chovelon J-M. A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique. Materials Science and Engineering: C. 2002;21(1-2):55–60.
[97] Anh TM, Dzyadevych SV, Van MC, Renault NJ, Duc CN, Chovelon JM. Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites. Talanta. 2004;63(2):365-70.
[98] Dzyadevych SV, Soldatkin AP, Arkhypova VN, El’skaya AV, Chovelon J-M, Georgiou CA, et al. Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition. Sens Actuators B: Chem. 2005;105(1):81–7.