Biopolym. Cell. 1986; 2(6):302-307.
Структура та функції біополімерів
Очищення і властивості двох форм лейцил-тРНК-синтетази з міокарду свині
1Стапулєніс Р. Р., 1Іванов Л. Л., 1Лукошявічюс Л. Ю., 1Ярмоленко В. В., 1Прашкявічюс А. К.
  1. Каунаський медичний інститут
    Каунас, СРСР

Abstract

Описано метод виділення з міокарда свині вільної і асоційованої з іншими аміноацил-тРНК-синтетазами форм лейцил-тРНК-синтетази та проведено порівняння низки їхніх фізико-хімічних властивостей. Встановлено, що лейцил-тРНК-синтетазна активність у складі високомолекулярного комплексу більш стійка до термоінактивації.

References

[1] Dang CV, Johnson DL, Yang DC. High molecular mass amino acyl-tRNA synthetase complexes in eukaryotes. FEBS Lett. 1982;142(1):1-6. Review.
[2] Dang CV. High molecular weight complex formation of rat liver lysyl-tRNA synthetase reduces enzyme lability to thermal inactivation. Biochem Biophys Res Commun. 1982;106(1):44-7.
[3] Iaremchuk AD, Tarasiavichene LE, Kondratiuk TP, El'skaia AV. Aminoacyl-tRNA-synthetases and their high molecular weight complexes in the regenerating rat liver. Mol Biol (Mosk). 1984;18(5):1336-41.
[4] Kovalenko MI, Rodovichyus GA, Tamulyavichyus AY, Pivoryunayte IY, Lukoshkyavichyus LYu, Prashkyavichyus AK. Study of the molecular basis of disorders of protein biosynthesis in experimental myocardial infarction and myocardial autolysis. Molekulyarnaya biologiya. 1984; Is. 37:18-21.
[5] Gabius HJ, von der Haar F, Cramer F. Purification by salting-out chromatography and properties of phenylalanyl-tRNA synthetase from turkey liver. Hoppe Seylers Z Physiol Chem. 1983;364(1):71-81.
[6] Lowry OH, Rosenbrought NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
[7] Warburg O, Christian W. Isolierung uns Kristallisation des Garungsferments Enolase. Biochem Z. 1941; 310(2):384-421.
[8] Chuang HY, Bell FE. Use of a thermal inactivation technique to obtain binding constants for the Escherichia coli valyl-tRNA synthetase. Arch Biochem Biophys. 1972;152(2):502-14.
[9] Martin RG, Ames BN. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961;236:1372-9.
[10] Ivanov LL, Stapulionis RR, Lukosevicius LJ. Purification and properties of leucyl-tRNA-synthetase from the mammalian tissues. Biopolym Cell. 1985; 1(3):154-6.
[11] Vellekamp GJ, Kull FJ. Allotropism in aspartyl-tRNA synthetase from procine thyroid. Eur J Biochem. 1981;118(2):261-9.
[12] Cornish-Bowden A. Fundamentals of enzyme kinetics. Moscow, Mir, 1979; 280 p.
[13] Vadeboncoeur C, Lapointe J. Slow diffusion of glutamate and ATP-Mg into high-molecular-weight complexes containing the glutamyl-tRNA synthetase from bovine brain. Eur J Biochem. 1980;109(2):581-7.
[14] Johnson DL, Van Dang C, Yang DC. Purification and characterization of lysyl-tRNA synthetase after dissociation of the particulate aminoacyl-tRNA synthetases from rat liver. J Biol Chem. 1980;255(9):4362-6.
[15] Siddiqui FA, Yang DC. Generation of multiple forms of methionyl-tRNA synthetase from the multi-enzyme complex of mammalian aminoacyl-tRNA synthetases by endogenous proteolysis. Biochim Biophys Acta. 1985;828(2):177-87.
[16] Burstein EA. Natural luminescence of proteins (the nature and application). Moscow, VINITI, 1977; Vol. 7. 189 p.
[17] Glushak VN, Demchenko AP, Orlovskaia NN, Gulyi MF. Spectral characteristics of muscle aspartyl- and valyl-tRNA- synthetases in normal animals and in an experimental model of prolonged starvation. Mol Biol (Mosk). 1984;18(5):1330-5.
[18] Korneliuk AI, Matsuka GKh, Shilin VV. Fluorescence analysis of the accessibility of tryptophan residues of leucyl-tRNA-synthetase in enzyme-substrate complexes. Biofizika. 1980;25(3):402-4.
[19] Chernitskiy EA. Luminescence and structural lability of proteins in solution and in the cell. Minsk, Nauka i tekhnika, 1972; 278 p.
[20] Permyakov EA, Burstein EA. Some aspects of studies of thermal transitions in proteins by means of their intrinsic fluorescence. Biophys Chem. 1984;19(3):265-71.