Biopolym. Cell. 1986; 2(6):283-292.
Огляди
ДНК: надспіралізація і утворення неканонічних структур
1Лазуркін Ю. С.
  1. Інститут молекулярної генетики АН СРСР
    Москва, СРСР

Abstract

Наведено огляд робіт з вивчення впливу надспіралізації на структуру і властивості ДНК. Показано, що під дією надспіралізації в ДНК утворюються три альтернативні, неканонічні структури: хрестоподібна, Z-форма і Н-форма (нова структура, що виникає в гомопурин-гомопіримідинових послідовностях). Переконливі докази утворення цих структур in vitro отримано останніми роками за допомогою методу двовимірного гель-електрофорезу. Їхнє формування у надспіральних ДНК тісно пов’язане зі специфічними білками, які зумовлюють їхню стабілізацію. Ці білки, ймовірно, відіграють важливу роль у регуляції генної активності.

References

[1] Gragerob AI, Mirkin SM. Influence of DNA superhelicity on the major genetic processes in prokaryotes. Mol Biol (Mosk). 1980;14(1):8-34.
[2] Kmiec EB, Worcel A. The positive transcription factor of the 5S RNA gene induces a 5S DNA-specific gyration in Xenopus oocyte extracts. Cell. 1985;41(3):945-53.
[3] Frank-Kamenetskii MD, Vologda AV. Topological aspects of the physics of polymers: theory and its biophysical applications. Uspekhi fizicheskikh nauk, 1981; 134 (4):641-73.
[4] Vedenov AA, Dykhne AM, Frank-Kamenetskii MD. The helix-coil transition in DNA. Uspekhi fizicheskikh nauk, 1971; 105 (3):479-519.
[5] Vologodskii AV, Lukashin AV, Anshelevich VV, Frank-Kamenetskii MD. Fluctuations in superhelical DNA. Nucleic Acids Res. 1979;6(3):967-82.
[6] Hsieh TS, Wang JC. Thermodynamic properties of superhelical DNAs. Biochemistry. 1975;14(3):527-35.
[7] Anshelevich VV, Vologodskii AV, Lukashin AV, Frank-Kamenetskii MD. Statistical-mechanical treatment of violations of the double helix in supercoiled DNA. Biopolymers. 1979;18(11):2733-44.
[8] Vologodskii AV, Frank-Kamenetskii MD. Theoretical study of cruciform states in superhelical DNAs. FEBS Lett. 1982;143(2):257-60.
[9] Lilley DM. The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci U S A. 1980;77(11):6468-72.
[10] Panayotatos N, Wells RD. Cruciform structures in supercoiled DNA. Nature. 1981;289(5797):466-70.
[11] Wang JC, Peck LJ, Becherer K. DNA supercoiling and its effects on DNA structure and function. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:85-91.
[12] Lyamichev VI, Panyutin IG, Frank-Kamenetskii MD. Evidence of cruciform structures in superhelical DNA provided by two-dimensional gel electrophoresis. FEBS Lett. 1983;153(2):298-302.
[13] Panyutin I, Klishko V, Lyamichev V. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA. J Biomol Struct Dyn. 1984;1(6):1311-24
[14] Panyutin I, Lyamichev V, Mirkin S. A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA. J Biomol Struct Dyn. 1985;2(6):1221-34.
[15] Greaves DR, Patient RK, Lilley DM. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J Mol Biol. 1985;185(3):461-78.
[16] Haniford DB, Pulleyblank DE. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 1985;13(12):4343-63.
[17] Vologodskii AV, Frank-Kamenetskii MD. The relaxation time for a cruciform structure in superhelical DNA. FEBS Lett. 1983;160(1-2):173-6.
[18] Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A. Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell. 1982;31(2 Pt 1):309-18.
[19] Rich A, Nordheim A, Wang AH. The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem. 1984;53:791-846.
[20] Singleton CK, Klysik J, Stirdivant SM, Wells RD. Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature. 1982;299(5881):312-6.
[21] Haniford DB, Pulleyblank DE. Facile transition of poly[d(TG) x d(CA)] into a left-handed helix in physiological conditions. Nature. 1983;302(5909):632-4.
[22] Frank-Kamenetskii MD, Vologodskii AV. Thermodynamics of the B-Z transition in superhelical DNA. Nature. 1984 Feb 2-8;307(5950):481-2.
[23] Singleton CK, Klysik J, Wells RD. Conformational flexibility of junctions between contiguous B- and Z-DNAs in supercoiled plasmids. Proc Natl Acad Sci U S A. 1983;80(9):2447-51.
[24] Wang AH, Gessner RV, van der Marel GA, van Boom JH, Rich A. Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc Natl Acad Sci U S A. 1985;82(11):3611-5.
[25] Ellison MJ, Kelleher RJ 3rd, Wang AH, Habener JF, Rich A. Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc Natl Acad Sci U S A. 1985;82(24):8320-4.
[26] Vologodskii AV. Theoretical model of the B-Z transition in DNA with an arbitrary sequence. Mol Biol (Mosk). 1985;19(4):1062-71.
[27] Cantor CR, Efstratiadis A. Possible structures of homopurine-homopyrimidine S1-hypersensitive sites. Nucleic Acids Res. 1984;12(21):8059-72.
[28] Nickol JM, Felsenfeld G. DNA conformation at the 5' end of the chicken adult beta-globin gene. Cell. 1983;35(2 Pt 1):467-77.
[29] Pulleyblank DE, Haniford DB, Morgan AR. A structural basis for S1 nuclease sensitivity of double-stranded DNA. Cell. 1985;42(1):271-80.
[30] Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn. 1985;3(2):327-38.
[31] Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD. Structures of homopurine-homopyrimidine tract in superhelical DNA. J Biomol Struct Dyn. 1986;3(4):667-9.
[32] Lyamichev VI, Mirkin SM, Frank-Kamenetskii MD. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA. Biopolym Cell. 1986; 2(3):115-24
[33] Lee JS, Johnson DA, Morgan AR. Complexes formed by (pyrimidine)n . (purine)n DNAs on lowering the pH are three-stranded. Nucleic Acids Res. 1979;6(9):3073-91.
[34] Lyamichev V, Panyutin I, Mirkin S. The absence of cruciform structures from pAO3 plasmid DNA in vivo. J Biomol Struct Dyn. 1984;2(2):291-301.
[35] Mirkin SM, Duzhyy DYe, Panyutin IG, Lyamichev VI. Detection cruciform structures in supercoiled plasmid DNA in vivo. Physico-chemical properties of biopolymers in solution and cells: Proc. of reports Int. symp. Pushchino, 1985; P. 89.
[36] Haniford DB, Pulleyblank DE. The in-vivo occurrence of Z DNA. J Biomol Struct Dyn. 1983;1(3):593-609.
[37] Kmiec EB, Holloman WK. Synapsis promoted by Ustilago rec1 protein. Cell. 1984;36(3):593-8.
[38] Azorin F, Rich A. Isolation of Z-DNA binding proteins from SV40 minichromosomes: evidence for binding to the viral control region. Cell. 1985;41(2):365-74.
[39] Emerson BM, Lewis CD, Felsenfeld G.Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult beta-globin gene: nature of the binding domain. Cell. 1985;41(1):21-30.
[40] Luchnik AN, Bakayev VV, Zbarsky IB, Georgiev GP. Elastic torsional strain in DNA within a fraction of SV40 minichromosomes: relation to transcriptionally active chromatin. EMBO J. 1982;1(11):1353-8.
[41] Ryoji M, Worcel A. Chromatin assembly in Xenopus oocytes: in vivo studies. Cell. 1984;37(1):21-32.
[42] Glikin GC, Ruberti I, Worcel A. Chromatin assembly in Xenopus oocytes: in vitro studies. Cell. 1984;37(1):33-41.