Biopolym. Cell. 2003; 19(5):393-413.
Огляди
Вплив умов культивування мікроорганізмів – продуцентів екзополісахаридів на їхній синтез та фізико-хімічні властивості
1Пирог Т. П., 1Кузьмінська Ю. В.
  1. Інститут мікробіології і вірусології ім. Д. К. Заболотного НАН України
    вул. Академіка Заболотного, 154, Київ, Україна, 03680

Abstract

В огляді наведено літературні та власні експериментальні дані щодо впливу умов культивування продуцентів на синтез екзополісахаридів (ЕПС) і їхні фізико-хімічні властивості. Утворення мікробних ЕПС (кількість синтезованих полісахаридів, швидкість їхнього синтезу та вихід залежно від субстрату) обумовлено складом живильного середовища (природа джерела вуглецю, азоту, фосфору, їхня концентрація, співвідношення вуглець/азот, іони металів), способом подачі субстрату, фізико-хімічних факторів (температура, рН, рівень аерації), тривалістю процесу періодичного культивування, швидкістю, розбавлення середовища при безперервному культиву­ванні. В різних умовах вирощування продуцента може змінюватися хімічний склад ЕПС, їхня молекулярна маса, а також співвідношення декількох полісахаридів, що впливає на реологічні властивості розчинів ЕПС, які визначають практичну значущість цих полімерів. Обговорюється питання про необхідність використання даних стосовно впливу умов культивування на синтез та фізико-хімічні властивості ЕПС у біотехнології мікробних полісахаридів при розробці технологій одержання ЕПС із стабільними заданими властивостями.

References

[1] Sutherland IW. Biosynthesis of microbial exopolysaccharides. Adv Microb Physiol. 1982;23:79-150.
[2] Slodki ME, Cadmus MC. Production of microbial polysaccharides. Adv Appl Microbiol. 1978;23:19-54.
[3] Sandford PA. Exocellular, microbial polysaccharides. Adv Carbohydr Chem Biochem. 1979;36:265-313.
[4] Pace GW, Righelato RC. Production of extracellular microbial polysaccharides. Adv Biochem Eng. 1980; 15(12):41-70.
[5] Kanamaru K, Hieda T, Iwamuro Y, Mkami Y, Obi Y, Kisaki T. Isolation and characterization of a Hyphomicrobium species and its polysaccharide formation from methanol. Agric Biol Chem. 1982;46(10):2411–7.
[6] Kanamaru K, Iwamuro Y, Mikami Y, Obi Y, Kisaki T. 2-O-methyl-D-mannose in an extracellular polysaccharide from Hyphomicrobium sp.. Agric Biol Chem. 1982;46(10):2419–24.
[7] Sutherland IW. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol. 1985;39:243-70.
[8] Grinberg TA, Pirog TP, Malashenko YuR, Pinchuk FE. Microbial synthesis of exopolysaccharides on Cl-Cr compounds. Kiev: Naukova Dumka, 1992. 212 p.
[9] Linton JD. The relationship between metabolite production and the growth efficiency of the producing organism. FEMS Microbiol Rev. 1990;6(1):1-18.
[10] Prigent JR. Les aspects industriels dans la production des polysaccharides microbiens. Petrole techn. 1988; 34 2:35-38.
[11] Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M. Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Appl Biochem Biotechnol. 2002;97(1):1-22.
[12] Pat. 4282321 USA, 1C3C12P19/06 . Fermentation process for production of xanthan. Publ. 04.08.1981.
[13] Souw P, Demain AL. Nutritional Studies on Xanthan Production by Xanthomonas campestris NRRL B1459. Appl Environ Microbiol. 1979;37(6):1186-92.
[14] Linton JD, Jones DS, Woodard S. Factors That Control the Rate of Exopolysaccharide Production by Agrobacterium radiobacter NCIB 11883. Microbiology. 1987;133(11):2979–87.
[15] Okabe E, Nakajima M, Murooka H, Nisizawa K. Investigation of carbon and phosphorus sources in cultural media of a selected strain of alginate-producing Azotobacter vinelandii. J Ferment Technol. 1981; 59(1):1-7.
[16] Horan NJ, Jarman TR, Dawes EA. Studies on Some Enzymes of Alginic Acid Biosynthesis in Azotobacter vinelandii Grown in Continuous Culture. Microbiology. 1983;129(10):2985–90.
[17] Clementi F, Fantozzi P, Mancini F, Moresi M. Optimal conditions for alginate production by Azotobacter vinelandii. Enzyme Microb Technol. 1995;17(11):983–8.
[18] Fett WF, Wijey C. Yields of alginates produced by fluorescent pseudomonads in batch culture. J Ind Microbiol. 1995;14(5):412–5.
[19] Severina LO, Usenko IA, Plakunov VK. Exopolysaccharide biosynthesis by the extreme halophilic archaebacterium Halobacterium volcanii. Mikrobiologiia. 1990;59(3):437-42.
[20] Martinez-Checa F, Toledo FL, Vilchez R, Quesada E, Calvo C. Yield production, chemical composition, and functional properties of emulsifier H28 synthesized by Halomonas eurihulina strain H - 28 in media containing various hydrocarbons. Appl Microbiol Biotechnol. 2002; 58(3):358-363 .
[21] Tallgren AH, Airaksinen U, von Weissenberg R, Ojamo H, Kuusisto J, Leisola M. Exopolysaccharide-producing bacteria from sugar beets. Appl Environ Microbiol. 1999;65(2):862-4.
[22] Scheepe-Leberkuhne M, Wagner F. Optimization and preliminary characterization of an exopolysaccharide synthezised by Enterobacter sakazakii. Biotechnol Lett. 1986;8(10):695–700.
[23] Cescutti P, Pupulin R, Delben F, Abbate M, Dentini M, Sparapano L, Rizzo R, Crescenzi V. New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine. Carbohydr Res. 2002;337(13):1203-9.
[24] Hagiwara S, Yamada K. Studies on the utilization of petrochemical product by microorganisms. Pt 2. Production of polysaccharide from ethandiol by Arthrobacter simplex var. viscosus n. var. Agr Biol Chem. 1970; 34(9):1283-95.
[25] Tanaka A, Cho J, Teranishi J. Production of polysaccharides from lower alcohols and glycols by nitrogen-fixing Pseudomonas sp. J Ferment Technol. 1974. 52(10):739-746.
[26] Jamagushi M, Sato A. The formation of viscous polysaccharides from ethylene glycol. Conditions for cultivation and identification of polysaccharides produced by microorganisms. Rept Ferment Res Inst. 1977; (49):91-101.
[27] Jamagushi M, Sato A. The formation of viscous polysaccharides from ethylene glycol. Components and properties of the polysaccharides. Rept Ferment Res Inst. 1977;(49):103-14.
[28] Jamagushi M, Sato A. The formation of of viscous polysaccharides from n-paraffins. Rept Ferment Res Inst. 1977; (49):115-21.
[29] Egorov NS, Rabotnova IL, Grechushkina YaI. Mycobacterial growth in media containing n-alkanes and some of their metabolic products. Microbial metabolites. M.: Publ Mosk Univ, 1979: 117-133.
[30] Semenova EV, Mudrik ES, Egorov NS. Exoglycan production by Mycobacterium cyaneum grown under the conditions of continuous cultivation. Mikrobiologiia. 1987;56(3):506-8.
[31] Belsky I, Gutnick DL, Rosenberg E. Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett. 1979;101(1):175-8.
[32] Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL. Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol. 1979;37(3):402-8.
[33] Pat. 4234689 USA 1C3 C12P19/04. Production of β-emulsans. D. L. Gutnick, E. Rosenberg, Y. Shabtai. Publ. 18.11.1980.
[34] Pat. 4395353 USA 1C3B01F17/30 . Polyanionic heteropolysaccharide biopolymers. D. L. Gutnick, E. Rosenberg, 1. Belsky, Z. Sava. Publ. 26.07.1983.
[35] Shabtai Y, Wang DI. Production of emulsan in a fermentation process using soybean oil (SBO) in a carbon-nitrogen coordinated feed. Biotechnol Bioeng. 1990;35(8):753-65.
[36] Kaplan N, Rosenberg E, Jann B, Jann K. Structural studies of the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur J Biochem. 1985;152(2):453-8.
[37] Kaplan N, Zosim Z, Rosenberg E. Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol. 1987;53(2):440-6.
[38] Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ. Production of Biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol. 1988;54(2):317-22.
[39] Rosenberg E. Pan Award. Microbial diversity as a source of useful biopolymers. J Ind Microbiol. 1993;11(3):131-7.
[40] Tam KT, Finn RK. Polysaccharide Formation by a Methylomonas. Extracellular Microbial Polysaccharides. 1977;58–80.
[41] Pat. 8012060 Japan, 1C3 C08B37/10 . Preparation of polysaccharide MH-2 from microorganisms. C. Ajinomoto. Publ. 17.03.80.
[42] Higgins IJ, Best DJ, Hammond RC, Scott D. Methane-oxidizing microorganisms. Microbiol Rev. 1981;45(4):556-90.
[43] Grinberg TA, Shchurova ZP, Romanovskaya VA, Malashenko YuR. Regulation of exopolysaccharide synthesis in the obligate methylotroph Methylococcus sp. Mikrobiol Zh. 1983; 45(4):44-7.
[44] Pinchuk GE, Shchurova ZP, Shatokhina ES, Mozhilevskaya LP, Sokolov IG, Malashenko YuR. Growth of the methane-oxidising bacterium Methylococcus thermophilus in the presence of amino acids belonging to the aspartate family Mikrobiologiia. 1987;56(4):621-5.
[45] Kenne L, Lindberg B. Bacterial polysaccharides. Polysaccharides. New York; London: Acad, press, 1983. 2: 287-363.
[46] Southgate G, Goodwin PM. The Regulation of Exopolysaccharide Production and of Enzymes Involved in C1 Assimilation in Methylophilus methylotrophus. Microbiology. 1989;135(11):2859–67.
[47] Deryabin VV, Starukhina LA, Usov AI, Yarotskiy SV. Acidic exopolysaccharide obligate methylotrophic bacteria Methylobacillus methylophilus VSB-792. Biotekhnologiia. 1986; 5: 22-7.
[48] Starukhina LA, Deryabin VV, Yarotskiy SV. Exogenous carbohydrate biopolymers obligate methylotrophs Methylobacillus methylophilus BWA - 792 (CMPMV-1946). XIII All-Union. Conf. "Chemistry and biochemistry of carbohydrates" (Tbilisi, 17-19 Nov, 1987): Proc. Pushchino: NCBI AS USSR, 1987: 131-2.
[49] Misaki A, Tsumuraya Y, Kakuta M, Takemoto H, Igarashi T. d-Allose-containing polysaccharide synthesized from methanol by Pseudomonas sp. Carbohydr Res. 1979;75:C8–C10.
[50] Pat. 929015 USSR, MKI3 C 12 P19.04 . A method of producing polysaccharide. E. Takama, C. Nosava, E. Masuda (Japan). Otkrytia. Izobretenia. 1982. 18: 303.
[51] Loginova NV, Trotcenko YuA. The formation of Blastobacter viscosus exopolysaccharide under the growth on medium with methanol. Prikl Biokhim Mikrobiol. 1980 16(3):331-4.
[52] Breuer U, Ackerman JU, Babel W. Accumulation of poly - ( 3 - hydroxybutyric acid) and over production of exopolysaccharides in a mutant of a methylotrophic bacterium: 4th Symp. Bact. Polyhydroxyalkanoates (Montreal, Aug. 14-18, 1994). Can J Microbiol. 1995; 41 (Suppl. 1): 55-9.
[53] Davis EN, Wallen LL. Viscous product from activated sludge by methanol fermentation. Appl Environ Microbiol. 1976;32(2):303-5.
[54] Hou CT, Laskin AI, Patel RN. Growth and Polysaccharide Production by Methylocystis parvus OBBP on Methanol. Appl Environ Microbiol. 1979;37(5):800-4.
[55] Pat. 3932218 USA, 1C2 C 12 D 13/04 . Production of heteropolysaccharides by fermentation of methanol. R. R. Finn, A. L. Tannahill, J. E. Laptevitz. Publ. 13.01.1976.
[56] Harada T. Special bacterial polysaccharides and polysaccharases. Biochem Soc Symp. 1983;48:97-116.
[57] Rees DA, Morris ER, Thorn D, Madden K. Shapes and interaction of carbohydrate chains. Polysaccharides. New York; London: Acad, press, 1982. Vol. 1: 196-281.
[58] Pirog TP, Kovalenko MA, Kuz'minskaya YuV. Exopolysaccharide production and peculiarities of C6-metabolism in Acinetobacter sp. grown on carbohydrate substrates. Mikrobiologiia. 2003;71(2):215-21.
[59] Pirog TP, Kovalenko MA. Energy and biochemical aspects intensification etapolana exopolysaccharide synthesis in a mixture of ethanol and glucose. Intern. Conf. "Microbiology and Biotechnology of XXI century»(21-25 May 2002) . Minsk, 2002: 56-57.
[60] Pat. 1513104 Britain, 1C3 C12D13.04. Process for the production of polysaccharide. R. C. Rhigelato, L. Deavin. Publ. 07.06.1978.
[61] Courtois B, Courtois J, Heyraud A, Rinaudo M. Effect of biosynthesis conditions on the chemical composition of the water-soluble polysaccharides of fast-growing rhizobia. J Gen Appl Microbiol. 1986;32(6):519–26.
[62] Leps WT, Thompson BG, Brandingen MA. Effect of medium constituents and pH control on growth and exopolysaccharide production by Rhizobium trifolii II Abstr. 87th Annu Meet Am Soc Microbiol. (Atlanta, Ga, 1987, 1-6 March). Washington, 1987: 265.
[63] Tkachenko AA, Alieva SN. Biosynthesis Levan Gluconobacter oxydans L-1 in the culture medium with molasses. Vesti LGU. Ser. 3. 1988; 4: 75-81.
[64] Brivonese AC, Sutherland IW. Polymer production by a mucoid strain of Azotobacter vinelandii in batch culture. Appl Microbiol Biotechnol. 1989; 30(1): 97-102.
[65] Yurlova NA, Kiriy AI, Kudryashova OA. Influence of nutrient medium composition upon the biosynthesis of extracellular polysaccharide by Aureobasidium pullulans strain 11. Mikrobiologiia. 1994;63(6):1031-7.
[66] Gvozdyak RI, MAtisevskaya MS, Grigiriev EF, Litvinchuk OA. Microbial polysaccharide xanthan. Kiev: Naukova Dumka, 1989. 212 p.
[67] Grigorova D, Pavlova K, Panchev I. Preparation and preliminary characterization of exopolysaccharides by yeast Rhodotorula acheniorum MC. Appl Biochem Biotechnol. 1999;81(3):181-91. PubMed PMID: 11039329.
[68] Giavasis I, Harvey LM, McNeil B. Gellan gum. Crit Rev Biotechnol. 2000;20(3):177-211.
[69] Leroy F, Degeest B, De VL. A novel area of predictive modelling: describing the functionality of beneficial microorganisms in foods. Int J Food Microbiol. 2002;73(2-3):251-9.
[70] Linton JD, Watts PD, Austin RM, Haugh DE, Niekus HGD. The energetics and kinetics of extracellular polysaccharide production from methanol by micro-organisms possessing different pathways of C1 Assimilation. Microbiology. 1986;132(3):779–88.
[71] Sengha SS, Anderson AJ, Hacking AJ, Dawes EA. The Production of Alginate by Pseudomonas mendocina in Batch and Continuous Culture. Microbiology. 1989;135(4):795–804.
[72] Mian FA, Jarman TR, Righelato RC. Biosynthesis of exopolysaccharide by Pseudomonas aeruginosa. J Bacteriol. 1978;134(2):418-22.
[73] Phillips KR, Pik J, Lawford HG, Lavers B, Kligerman A, Lawford GR. Production of curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture . Can J Microbiol. 1983;29(10):1331–8.
[74] Williams SG, Greenwood JA, Jones CW. Physiological and biochemical changes accompanying the loss of mucoidy by Pseudomonas aeruginosa. Microbiology. 1996;142 (Pt 4):881-8.
[75] Pirog TP, Kovalenko MA, Kuzminskaya YuV, Krishtab TP. Enhanced synthesis of the exopolysaccharide ethapolan. Mikrobiologiia. 2003;72(1):26-32.
[76] Pat. 3878045 USA, 1C2C12D13/04. Process for the production of heteropolysaccharides by fermentation of methanol. A. L. Tannahill, R. K. Finn. Publ. 10.07.1975.
[77] Pirog TP, Kuzminskaya YuV. Regulation of the activity of acetyl-CoA synthetase in the mutant strain Acinetobacter sp., Which does not form exopolysaccharides. Intern. Conf. "Microbiology and Biotechnology of XXI century» (21-25 May 2002). Minsk, 2002: 5 8-5 9.
[78] Shin YC, Kim YH, Lee HS, Kim YN, Byun SM. Production of pullulan by a fed-batch fermentation. Biotechnol Lett. 1987;9(9):621–4.
[79] Rau U, Gura E, Olszewski E, Wagner F. Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol. 1992;9(1):19–25.
[80] Kodama T, Nakahara T, Omori T, Binh NT, Hoshino K, Minoda I. The formation of extracellular polysaccharides hydrogen and methane using microorganisms. The growth of microorganisms on the Cl-compounds: Proc. rep. Symposium. (12-16 Sept 1977). Pushchino: NCBI AS USSR, 1977: 213-5.
[81] Grinberg TA. Ability of mixed cultures of methylotrophic microorganisms to synthesize exopolysaccharides. Mikrobiol Zh. 1987; 49(2):52-6.
[82] Pat. 4006058 USA, 1C2C12D13/04 . Biopolymer production process. J. G. Savins. Publ. 01.02.1977.
[83] Krieg DP, Bass JA, Mattingly SJ. Stimulation of alginate synthesis by the addition of phosphorylcholine to mucoid Pseudomonas aeruginosa grown under phosphate-limiting conditions. Abstr. 87th Annu. Meet. Amer. Soc. Microbiol. (Atlanta, Ga, 1987, 1-6 March). Washington, 1987: 89.
[84] Pat. 2233397 France, 1C2 C 12 D13/04 . Procede pour la production d'un polysaccharide d'alginate type. Publ. 14.11.1975 .
[85] Pat. 524576 USSR, MKI2 C 12 D13.04. A method of producing polysaccharide. K. Fraser, J. Elliott (USA). Otkrytiia. Izobretenia. 1976; N 18: 184 .
[86] Graber-Gubert M, Morin A, Monsan P. Isolation of Microorganisms Producing 6-Deoxyhexose-Containing Polysaccharides. Syst Appl Microbiol. 1988;10(2):200–5.
[87] Manresa A, Espuny M, Guinea J, Comelles F. Characterization and production of a new extracellular polymer from Pseudomonas sp. GSP-910. Appl Microbiol. 1987; 26(4): 347-51.
[88] Appanna VD. Stimulation of exopolysaccharide production inRhizobium meliloti JJ-1 by manganese. Biotechnol Lett. 1988;10(3):205–6.
[89] Appanna VD. Exopolysaccharide synthesis in Rhizobium trifolii in the presence of manganese and aluminium. Microbiol Lett. 1989;40(157):31-6.
[90] Appanna VD, Preston CM. Manganese elicits the synthesis of a novel exopolysaccharide in an arctic Rhizobium. FEBS Lett. 1987;215(1):79–82.
[91] Lee PK, Chang HN, Kim BH. Xanthan production byXanthomonas campestris in continuous fermentation. Biotechnol Lett. 1989;11(8):573–8.
[92] Nirmala C, Purushothaman D. Production of xanthan gum by Xanthomonas campestris var. oryzicola as influenced by nutritional factors. Nat Acad Sci Lett. 1991; 14(2): 71-4.
[93] Ferrala NF, Westervelt P, Mabbott GA, Fekete FA. Relationship between extracellular polysaccharide production and medium iron concentration in nitrogen-fixing Azotobacter chroococcum B-8. Abstr. 86th Annu. Meet. Amer. Soc. Microbiol. (23-28 March, 1986). Washington, 1986: 217.
[94] Annison G, Couperwhite I. Influence of calcium on alginate production and composition in continuous cultures of Azotobacter vinelandii. Appl Microbiol Biotechnol. 1986;25(1):55-61.
[95] Annison G, Couperwhite I. Composition of alginate synthesized during the growth cycle of Pseudomonas aeruginosa. Aust J Biol Sci. 1987;40(4):435-41.
[96] Davidson IW. Production of polysaccharide by Xanthomonas campestris in continuous culture. FEMS Microbiol Lett. 1978;3(6):347–9.
[97] Reeslev M, Jensen B. Influence of Zn2+ and Fe3+ on polysaccharide production and mycelium/yeast dimorphism of Aureobasidium pullulans in batch cultivations. Appl Microbiol Biotechnol. 1995;42(6):910–5.
[98] Blinov NP. Some microbial polysaccharides and their practical application. Uspekhi Mikrobiologii. M.: Nauka, 1982: 158-177.
[99] H?ggstr?m L. Mutant of Methylomonas methanolica and Its Characterization with Respect to Biomass Production from Methanol. Appl Environ Microbiol. 1977;33(3):567-76.
[100] Williams AG, Wimpenny JWT. Exopolysaccharide production by Pseudomonas NCIB11264 grown in continuous culture. J Gen Microbiol. 1978;104(1):47–57.
[101] Wang Y, McNeil B. Effect of temperature on scleroglucan synthesis and organic acid production by Sclerotium glucanicum. Enzyme Microbial Technology. 1995;17(10):893–9.
[102] Wang Y, McNeil B. Scleroglucan. Crit Rev Biotechnol. 1996;16(3):185-215.
[103] Pfiffner SM, McInerney MJ, Jenneman GE, Knapp RM. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Appl Environ Microbiol. 1986;51(6):1224-9.
[104] Marshall VM, Cowie EN, Moreton RS. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J Dairy Res. 1995;62(04):621-8.
[105] Marqu?s AM, Esta-ol I, Alsina JM, Fust? C, Simon-Pujol D, Guinea J, Congregado F. Production and Rheological Properties of the Extracellular Polysaccharide Synthesized by Pseudomonas sp. Strain EPS-5028. Appl Environ Microbiol. 1986;52(5):1221-3.
[106] Heald PJ, Kristiansen B. Synthesis of polysaccharide by yeast-like forms of Aureobasidium pullulans. Biotechnol Bioeng. 1985;27(10):1516-9.
[107] McNeil B, Kristiansen B, Seviour RJ. Polysaccharide production and morphology of Aureobasidium pullulans in continuous culture. Biotechnol Bioeng. 1989;33(9):1210-2.
[108] Mozzi F, de Giori GS, Oliver G, de Valdez GF. Exopolysaccharide production by Lactobacillus casei under controlled pH. Biotechnol Lett. 1996;18(4):435–9.
[109] Dudman WF. Cellulose production by Acetobacter strains in submerged culture. J Gen Microbiol. 1960;22:25-39.
[110] Pirog TP, Grinberg TL, Malashenko YuP. Influence of environmental factors on the formation and properties of exo-polysaccharides Acinetobacter sp. Prikl Biokhim Mikrobiol. 1998; 34(1):70-4.
[111] McNeil B, Kristiansen B. Influence of impeller speed upon the pullulan fermentation. Biotechnol Lett. 1987;9(2):101–4.
[112] Simon L, Caye-Vaugien C, Bouchonneau M. Relation between pullulan production, morphological state and growth conditions in Aureobasidium pullulans: new observations. J Gen Microbiol. 1993;139(5):979–85.
[113] Osadchaya AI, Kudryavtsev VA, Reznik SR. Effect of aeration on the synthesis and excretion of polysaccharides in their submerged cultivation. Biotekhnologiia. 1993; (3): 12-14.
[114] Rogovin P, Albrecht W, Sohns V. Production of industrial-grade polysaccharide B-1459. Biotechnol Bioeng. 1965;7(1):161–9.
[115] Lawford H, Rousseau J. Effect of oxygen on the rate of??-1,3-glucan microbial exopolysaccharide production. Biotechnol Lett. 1989;11(2):125–30.
[116] Pace GW. Microbial polysaccharides. Fermentation Products. (Proc. Int. Ferment. Symp.). 1981; 3:433-9.
[117] Margaritis A, Pace GW. Microbial polysaccharides. Comprehens. Biotechnol. Oxford etc.: Pergamon press, 1985. Vol. 3: 1005-44.
[118] Oosterhuis NMG, Baal HC. Koerts K. New chances for microbial polysaccharides. World Biotech. Rept. Conf. (San Francisco, Nov. 1986) . New York; London, 1986. Vol. 2, pt 3: 105-112.
[119] Pat. 2488909 France, 1C3 C12 P19/04. Production de polysaccharides microbiens. L. Kim, S. Gordon. Publ. 26.02.1982.
[120] Jarman TR. Bacterial alginate synthesis. Microbial polysaccharides and polysaccharases. Ed. R. C. W. Berkeley. London: Acad, press, 1978: 35-50.
[121] Jarman TR, Deavin L, Slocombe S, Righelato RC. Investigation of the Effect of Environmental Conditions on the Rate of Exopolysaccharide Synthesis in Azotobacter vinelandii. J Gen Microbiol. 1978;107(1):59–64.
[122] Silman RW, Rogovin P. Continuous fermentation to produce xanthan biopolymer: Effect of dilution rate. Biotechnol Bioeng. 1972;14(1):23–31.
[123] Looijesteijn PJ, van Casteren WHM, Tuinier R, Doeswijk-Voragen CHL, Hugenholtz J. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. J App Microbiol. 2000;89(1):116–22.
[124] Sandford PA. Industrial utilization of polysaccharides. Polysaccharides. New York; London: Acad, press, 1983. Vol. 2: 411-90.
[125] Sandford PA, Cottrell IW, Pettitt DJ. Microbial polysaccharides: new products and their commercial applications. Pure Appl Chem. 1984;56(7).
[126] Chida K, Shen G-J, Kodama T, Minoda Y. Acidic polysaccharide production from methane by a new methane-oxidizing bacterium H-2. Agricult Biol Chem. 1983;47(2):275–80.
[127] Evans CGT, Yeo RG, Ellwood DC. Continuous culture studies on the production of extracellular polysaccharides by Xanthomonas juglandis II Microbial polysaccharides and polysaccharases. Ed. R. C. W. Berkeley. London: Acad, press, 1978. Vol. 3: 51-68.
[128] Pat. 1512536 Britain, 1C3 C 12D13/04. Productions of polysaccharides. Publ. 01.06.1978.
[129] Cadmus MC, Rogovin SP, Burton KA, Pittsley JE, Knutson CA, Jeanes A. Colonial variation in Xanthomonas campestris NRRL B-1459 and characterization of the polysaccharide from a variant strain. Can J Microbiol. 1976;22(7):942-8.
[130] Cadmus MC, Knutson CA, Lagoda AA, Pittsley JE, Burton KA. Synthetic media for production of quality xanthan gum in 20 liter fermentors. Biotechnol Bioeng. 1978;20(7):1003–14.
[131] Philips JC, Miller JW, Wernau WC, Tate BE, Auerbach MH. A High-Pyruvate Xanthan for EOR. Society of Petroleum Engineers Journal. 1985;25(04):594–602.
[132] Tait MI, Sutherland IW, Clarke-Sturman AJ. Effect of Growth Conditions on the Production, Composition and Viscosity of Xanthomonas campestris Exopolysaccharide. Microbiology. 1986;132(6):1483–92.
[133] Skj?k-Br?k G, Smidsr?d O, Larsen B. Tailoring of alginates by enzymatic modification in vitro. Int J Biol Macromol. 1986;8(6):330–6.
[134] Deryabin VV, Starukhina LA, Glukhova EV. Structurial and rheological characterisation of exopolysaccharides from new strains of Azotobacter vinelandii II Abstr. 6th Eur. Symp. Carbohydr. Chem. (Edinburgh, 1-13 Sept., 1991). Letehe - vorth, 1991: 137.
[135] Bryan BA, Linhardt RJ, Daniels L. Variation in composition and yield of exopolysaccharides produced by Klebsiella sp. strain K32 and Acinetobacter calcoaceticus BD4. Appl Environ Microbiol. 1986;51(6):1304-8.
[136] Bryan BA, Linhardt R, Daniels L. Variation in composition and yield of exopolysaccharides produced by Klebsiella, Acinetobacter, and Rhodotorula species. Abstr. 86th Annu. Meet. Am Soc. Microbiol. (23-28 March, 1986) . Washington, 1986: 272.
[137] Huq MN, Ralph BJ, Rickard PAD. The extracellular polysaccharide of a methylotrophic culture. Austral J Biol Sci. 1978; 31(3):311-6.
[138] Khmelenina VN, RR, Suzina NE, Doronina NV, Mshensky YuN, Trotsenko YuA. The synthesis of polysaccharides by Methylococcus capsulatus under various conditions of cultivation. Mikrobiologiia. 1992;61(3):404-10.
[139] Van Alfen NK. The Multi-Component Extracellular Polysaccharide of Clavibacter michiganense subsp. insidiosum. Phytopathology. 1987;77(3):496.
[140] Bejar V, Calvo C, Moliz J, Diaz-Martinez F, Quesada E. Effect of growth conditions on the rheological properties and chemical composition ofVolcaniella eurihalina exopolysaccharide. Appl Biochem Biotechnol. 1996;59(1):77–86.
[141] Bolokhovskaya VA, Gvozdyak RI, Votselko SK, Martynyuk NB, Nagornaya OV. Physico-chemical properties of polymyxan preparations produced from different Bacillus polymyxa strain. Mikrobiol Zh. 1993; 55(2):27-34.
[142] Bouzar F, Cerning J, Desmazeaud M. Exopolysaccharide Production in Milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by Two Colonial Variants. Journal of Dairy Science. 1996;79(2):205–11.
[143] Pirog TP, Krasnopertseva IV, Grinverg TA., Vlasov SA, Vocelko CK, Malashenko YuR. Change some of the properties of exopolysaccharides Acinetobacter sp. in the batch culture. Biotekhnologiia. 1991;(4):67-70.
[144] Pirog TP. The regulation principles of composition and physico-chemical properties of exopolysaccharides synthesized by Acinetobacter sp..: Thesis. Dr. biol nauk. Kyiv, 1999. 450 p.
[145] Kovalenko MA, Kovalenko OG, Pirog TP. Antivirus activity of native and deacylated preparations the microbial exopolysaccharide ethapolane. Vistn Nats Univ imemi Tarasa Shevchenka (Biol). 2001;3 5:32-5.
[146] Anan'eva EP, Bystrova ZhV, Vitovskaya GA. Influence of conditions of biosynthesis of the physico-chemical properties of exopolysaccharides Bullera alba. Prikl Biokhim Mikrobiol. 1995; 31(4): 417-21.
[147] Pat. 7915872 Japan, 1C3 C12D13/04. Polysaccharide und verfahren zu ihrer herstellung. H. Takemoto, I. Igarashi, Y. Shnanyo. Publ. 31.01.1979.
[148] Madi NS, McNeil B, Harvey LM. Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J. Chem. Technol Biotechnol. 1996; 65(4): 343-50.
[149] Kaplan DL, Arcidiacono S, Wiley BJ. Fermentation and processing requirements for the production of high molecular weight pullulan from Aureobasidium pullulans and chitosan from Mucor rouxii II Abstr. 87th Annu. Meet Am Soc Microbiol. (Atlanta, 1-6 March, 1987). Washington, 1987: 264.
[150] Grinberg TA, Pirog TP, Pinchuk GE, Buklova VN, Malashenko YuR. Change of composition and properties of exopolysaccharides synthesized by Acinetobacter sp. in the course of batch cultivation. Mikrobiologiia. 1994;63(6):1015-19.
[151] Pirog TP, Grinberg TA, Buklova VN, Votselko SA, Malashenko YuR. Production of Acinetobacter sp. Exopolysaccharides in batch culture in the presence of different potassium concentrations. Mikrobiologiia. 1995; 64(1):51-4.
[152] Pirog TP, Malashenko IuR, Votselko SK. [A two-stage technique for producing the microbial exopolysaccaride ethapolan with improved rheological properties]. Prikl Biokhim Mikrobiol. 2001;37(4):429-35.
[153] Gross M, Rudolph K. Studies on the Extracellular Polysaccharides (EPS) Produced in vitro by Pseudomonas phaseolicola I. Indications for a Polysaccharide Resembling Alginic Acid in Seven P. syringae Pathovars. J Phytopathol. 1987;118(3):276–87.
[154] Singh S, F. Fett W. Stimulation of exopolysaccharide production by fluorescent pseudomonads in sucrose media due to dehydration and increased osmolarity. FEMS Microbiol Lett. 1995;130(2-3):301–6.
[155] Navarini L, Ces?ro A, Ross-Murphy SB. Exopolysaccharides from Rhizobium meliloti YE-2 grown under different osmolarity conditions: viscoelastic properties. Carbohydr Res. 1992;223:227-34.
[156] Astete SG, Leigh JA. mucS, a gene involved in activation of galactoglucan (EPS II) synthesis gene expression in Rhizobium meliloti. Mol Plant Microbe Interact. 1996;9(5):395-400.
[157] Becker A, R?berg S, Baumgarth B, Bertram-Drogatz PA, Quester I, P?hler A. Regulation of succinoglycan and galactoglucan biosynthesis in Sinorhizobium meliloti. J Mol Microbiol Biotechnol. 2002;4(3):187-90. PubMed PMID: 11931545.
[158] C?rantola S. Production in vitro, on different solid culture media, of two distinct exopolysaccharides by a mucoid clinical strain of Burkholderia cepacia. FEMS Microbiol Lett. 2001;202(1):129–33.
[159] Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T, Gugliandolo C, Caccamo D. A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent, able to produce exopolysaccharides. Syst Appl Microbiol. 2000;23(3):426-32.
[160] Degeest B, De Vuyst L. Indication that the nitrogen source influences both amount and size of exopolysaccharides produced by streptococcus thermophilus LY03 and modelling of the bacterial growth and exopolysaccharide production in a complex medium . Appl Environ Microbiol. 1999;65(7):2863-70.
[161] Pyroh TP, Senchenkova SM, Hrinberh TA, Malashenko IuR. [Structure of an acylated exopolysaccharide synthesized by Acinetobacter sp]. Ukr Biokhim Zh. 2001;73(3):71-9.
[162] Pirog TP. Production of acylated exopolysaccharides in a batch culture of Acinetobacter sp. Mikrobiologiia. 1996; 65(5):644-48.
[163] Pyroh TP, Hrinberh TO, Malashenko IuR. [Strategy of obtaining microbial exopolysaccharides possessing stable preset properties]. Mikrobiol Z. 2002;64(3):81-94.
[164] Betlach MR, Capage MA, Doherty DH, Hassler RA, Henderson NM Vanderslice RW, Marrelli JD, Ward MB. Genetically engineered polymers: manipulation of xanthan biosynthesis. Proc. Symp. Appl. and Modif. Ind. Polysaccharides. 193th Amer. Chem. Soc. Nat. Meet. (Denver, Colo, 5-10 Apr., 1987). Amsterdam etc., 1987: 35-50.
[165] Wozniak DJ, Ohman DE. Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol. 1991;173(4):1406-13.
[166] Mart?nez-Salazar JM, Moreno S, N?jera R, Boucher JC, Esp?n G, Sober?n-Ch?vez G, Deretic V. Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol. 1996;178(7):1800-8.
[167] Yamazaki M, Thorne L, Mikolajczak M, Armentrout RW, Pollock TJ. Linkage of genes essential for synthesis of a polysaccharide capsule in Sphingomonas strain S88. J Bacteriol. 1996;178(9):2676-87.
[168] Sutherland IW. Novel and established applications of microbial polysaccharides. Trends Biotechnol.1998;16(1):41–6.
[169] Fu JF, Tseng YH. Construction of lactose-utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl Environ Microbiol. 1990;56(4):919-23.
[170] Pyrog TP. [Biological functions of microbial exopolysaccharides]. Mikrobiol Z. 2001;63(5):80-101.
[171] S?nchez-And?jar B, Coronado C, Philip-Hollingsworth S, Dazzo FB, Palomares AJ. Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv trifolii. Mol Gen Genet. 1997;255(2):131-40.
[172] Metzger M, Bellemann P, Bugert P, Geider K. Genetics of galactose metabolism of Erwinia amylovora and its influence on polysaccharide synthesis and virulence of the fire blight pathogen. J Bacteriol. 1994;176(2):450-9.
[173] Boels IC, Ramos A, Kleerebezem M, de Vos WM. Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Appl Environ Microbiol. 2001;67(7):3033-40.
[174] Franklin MJ, Ohman DE. Identification of algI and algJ in the Pseudomonas aeruginosa alginate biosynthetic gene cluster which are required for alginate O acetylation. J Bacteriol. 1996;178(8):2186-95.
[175] Cieslewicz MJ, Kasper DL, Wang Y, Wessels MR. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J Biol Chem. 2001;276(1):139-46.
[176] Bertram-Drogatz PA, Quester I, Becker A, P?hler A. The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY. Mol Gen Genet. 1998;257(4):433-41.
[177] Mendrygal KE, Gonz?lez JE. Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol. 2000;182(3):599-606.
[178] Lloret J, Mart?n M, Oruezabal RI, Bonilla I, Rivilla R. MucR and MucS Activate exp Genes Transcription and Galactoglucan Production in Sinorhizobium meliloti EFB1. Mol Plant Microbe Interact. 2002;15(1):54–9.
[179] Mart?n M, Lloret J, S?nchez-Contreras M, Bonilla I, Rivilla R. MucR Is Necessary for Galactoglucan Production in Sinorhizobium meliloti EFB1 . Mol Plant Microbe Interact. 2000;13(1):129–35.