Biopolym. Cell. 2003; 19(3):211-215.
Огляди
Використання таргетингу для вирішення проблем біології розвитку
1Анопрієнко О. В., 1Євсіков О. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

В останні роки центр ваги ембріологічних досліджень змістився на вивчення ролі окремих генів в онтогенезі. Активне впровадження нових молекулярно-біологічних підходів, що дозволяють досліджувати функції генів та динаміку їхньої експресії в процесі розвитку організму, розпочалося з розробки технології культивування миишчих ES-клітин. В огляді розглянуто загальні принципи деяких сучасних методів — спрямованої модифікації генів за допомогою гомологічної рекомбінації, Cre–LoxP-системи сайт-спрямованої рекомбінації, стратегії «gene-trapping», оцінено їхні можли­вості та перспективи використання.

References

[1] Green PB. Inheritance of Pattern: Analysis from Phenotype to Gene.Integr Comp Biol. 1987;27(2):657–73.
[2] Arnone MI, Davidson EH. The hardwiring of development: organization and function of genomic regulatory systems. Development. 1997;124(10):1851-64.
[3] Oliver SG. From DNA sequence to biological function. Nature. 1996;379(6566):597-600.
[4] Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–6.
[5] Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634-8.
[6] Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl Acad Sci U S A. 1997;94(11):5709-12.
[7] Nagy A, G?cza E, Diaz EM, Prideaux VR, Iv?nyi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development. 1990;110(3):815-21.
[8] Nagy A, Rossant J. Production of completely ES cell-derived fetuses. Gene Targeting: A Principal Approach. Ed. A. L. Joyner. New York: Oxford Univ. press, 1993: 147-79.
[9] Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 1985 Sep 19-25;317(6034):230-4.
[10] Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 1987;51(3):503-12.
[11] Strauss WM, Dausman J, Beard C, Johnson C, Lawrence JB, Jaenisch R. Germ line transmission of a yeast artificial chromosome spanning the murine alpha 1(I) collagen locus. Science. 1993;259(5103):1904-7.
[12] Ram?rez-Solis R, Liu P, Bradley A. Chromosome engineering in mice. Nature. 1995;378(6558):720-4.
[13] Smith AJ, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P. A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet. 1995;9(4):376-85.
[14] Doetschman T, Maeda N, Smithies O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1988;85(22):8583-7.
[15] Mansour SL, Thomas KR, Capecchi MR. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 1988;336(6197):348-52.
[16] Johnson RS, Sheng M, Greenberg ME, Kolodner RD, Papaioannou VE, Spiegelman BM. Targeting of nonexpressed genes in embryonic stem cells via homologous recombination. Science. 1989;245(4923):1234-6.
[17] Hasty P, Rivera-P?rez J, Chang C, Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol. 1991;11(9):4509-17.
[18] Chauhan SS, Gottesman MM. Construction of a new universal vector for insertional mutagenesis by homologous recombination. Gene. 1992;120(2):281-5.
[19] Zhang H, Hasty P, Bradley A. Targeting frequency for deletion vectors in embryonic stem cells. Mol Cell Biol. 1994;14(4):2404-10.
[20] Sauer B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 1993;225:890-900.
[21] Orban PC, Chui D, Marth JD. Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A. 1992;89(15):6861-5.
[22] K?hn R, Schwenk F, Aguet M, Rajewsky K. Inducible gene targeting in mice. Science. 1995;269(5229):1427-9.
[23] Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R. Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol. 1981;45 Pt 1:297-309.
[24] Matzuk MM, Finegold MJ, Su JG, Hsueh AJ, Bradley A. Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature. 1992;360(6402):313-9.
[25] Brandon EP, Idzerda RL, McKnight GS. Knockouts. Targeting the mouse genome: a compendium of knockouts (Part I). Curr Biol. 1995;5(6):625-34.
[26] Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science. 1989;244(4903):463-5.
[27] Friedrich G, Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991;5(9):1513-23.
[28] Forrester LM, Nagy A, Sam M, Watt A, Stevenson L, Bernstein A, Joyner AL, Wurst W. An induction gene trap screen in embryonic stem cells: Identification of genes that respond to retinoic acid in vitro. Proc Natl Acad Sci U S A. 1996;93(4):1677-82.
[29] Gossler A., Zachgo J. Gene and enhanser trap screens in ES cell chimeras. Gene Targeting: A practical Approach. Ed. A. L. Joyner. New York: Oxford Univ. press, 1993: 181-227.
[30] Joyner AL. Gene targeting and gene trap screens using embryonic stem cells: new approaches to mammalian development. Bioessays. 1991;13(12):649-56.
[31] Xiong JW, Battaglino R, Leahy A, Stuhlmann H. Large-scale screening for developmental genes in embryonic stem cells and embryoid bodies using retroviral entrapment vectors. Dev Dyn. 1998;212(2):181-97.
[32] Hicks GG, Shi EG, Li XM, Li CH, Pawlak M, Ruley HE. Functional genomics in mice by tagged sequence mutagenesis. Nat Genet. 1997;16(4):338-44.
[33] Featherstone T, Huxley C. Extrachromosomal maintenance and amplification of yeast artificial chromosome DNA in mouse cells. Genomics. 1993;17(2):267-78.
[34] Wohlgemuth JG, Kang SH, Bulboaca GH, Nawotka KA, Calos MP. Long-term gene expression from autonomously replicating vectors in mammalian cells. Gene Ther. 1996;3(6):503-12.
[35] Brown WR. Molecular cloning of human telomeres in yeast. Nature. 1989;338(6218):774-6.
[36] Farr C, Fantes J, Goodfellow P, Cooke H. Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A. 1991;88(16):7006-10.
[37] Ikeno M, Grimes B, Okazaki T, Nakano M, Saitoh K, Hoshino H, McGill NI, Cooke H, Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998;16(5):431-9.
[38] Kelleher ZT, Fu H, Livanos E, Wendelburg B, Gulino S, Vos JM. Epstein-Barr-based episomal chromosomes shuttle 100 kb of self-replicating circular human DNA in mouse cells. Nat Biotechnol. 1998;16(8):762-8.
[39] Tomizuka K, Yoshida H, Uejima H, Kugoh H, Sato K, Ohguma A, Hayasaka M, Hanaoka K, Oshimura M, Ishida I. Functional expression and germline transmission of a human chromosome fragment in chimaeric mice. Nat Genet. 1997;16(2):133-43.
[40] Gilbert SF, Opitz JM, Raff RA. Resynthesizing evolutionary and developmental biology. Ontogenez. 1997; 28(5):325—43.