Biopolym. Cell. 2002; 18(5):363-376.
Огляди
Амперометричні біосенсори. Сучасні технології та комерційні
варіанти аналізаторів
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Проаналізовано можливості сучасних мікросистемних технологій, які включають у себе виробництво амперометричних
біосенсорів (виготовлення перетворювачів, методи іммобілізації біологічного матеріалу, суміщення різних технологічних процесів в одному виробничому циклі). Описано сучасні комерційні системи на базі амперометричних біосенсорів та
галузі їхнього застосування.
Повний текст: (PDF, російською)
References
[1]
Dzyadevych SV. Amperometric biosensors. Key work principles and features of transducers of different generations. Biopolym Cell. 2002; 18(1):13-25.
[2]
Fluitman J. Microsystems technology: objectives. Sensors and Actuators A: Physical. 1996;56(1-2):151–66.
[3]
Zinner H. Microsystems - the European approach. Sensors and Actuators A: Physical. 1995;46(1-3):1–7.
[4]
Abraham M, Ehrfeld W, Hessel V, K?mper KP, Lacher M, Picard A. Microsystem technology: Between research and industrial application. Microelectron Eng. 1998;41-42:47–52.
[5]
Schultze JW, Tsakova V. Electrochemical microsystem technologies: from fundamental research to technical systems. Electrochim Acta. 1999;44(21-22):3605–27.
[6]
Rapp R, Hoffmann W, S?? W, Ache HJ, G?lz H. Performance of an electrochemical microanalysis system. Electrochim Acta. 1997;42(20-22):3391–8.
[7]
Weber SG. Signal-to-noise ratio in microelectrode-array-based electrochemical detectors. Anal Chem. 1989;61(4):295-302.
[8]
Cespedes F, Alegret S. New materials for electrochemical sensing: glucose biosensors based on rigid carbon-polymer biocomposites. Food Technol Biotechnol. 1996; 34(4): 143-6.
[9]
Atanasov P, Gamburzev S, Wilkins E. Needle-type glucose biosensors based on a pyrolyzed cobalt-tetramethoxy-phenylporphyrin catalytic electrode. Electroanalysis. 1996; 8(2): 158-64.
[10]
Khan GF, Wernet W. Platinization of Shapable Electroconductive Polymer Film for an Improved Glucose Sensor. J Electrochem Soc. 1996;143(10):3336-42.
[11]
Kr?ger S, Turner APF. Solvent-resistant carbon electrodes screen printed onto plastic for use in biosensors. Anal Chim Acta. 1997;347(1-2):9–18.
[12]
Silber A, Bisenberger M, Br?uchle C, Hampp N. Thick-film multichannel biosensors for simulataneous amperometric and potentiometric measurements. Sensors and Actuators B: Chemical. 1996;30(2):127–32.
[13]
Khan GF. Organic charge transfer complex based printable biosensor. Biosens Bioelectron. 1996;11(12):1221-7.
[14]
Albareda-Sirvent M, Merko?i A, Alegret S. Configurations used in the design of screen-printed enzymatic biosensors. A review. Sensors and Actuators B: Chemical. 2000;69(1-2):153–63.
[15]
Lorenzo E, Pariente F, Hern?ndez L, Tobalina F, Darder M, Wu Q, et al. Analytical strategies for amperometric biosensors based on chemically modified electrodes. Biosens Bioelectron. 1998;13(3-4):319–32.
[16]
Silber A, Hampp N, Schuhmann W. Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors. Biosens Bioelectron. 1996;11(3):215-23.
[17]
M?d?ra? MB, Buck RP. Miniaturized biosensors employing electropolymerized permselective films and their use for creatine assays in human serum. Anal Chem. 1996;68(21):3832-9.
[18]
Sirkar K, Pishko MV. Amperometric Biosensors Based on Oxidoreductases Immobilized in Photopolymerized Poly(ethylene glycol) Redox Polymer Hydrogels. Anal Chem. 1998;70(14):2888–94.
[19]
Muguruma HK, Karube I. Plasma-polymerised films for biosensors. Trends Anal Chem. 1999;18:62-8.
[20]
Wohltjen H. Chemical microsensors and microinstrumentation. Anal Chem. 1984;56(1):87A–103A.
[21]
Vidal JC, Garc?a E, M?ndez S, Yarnoz P, Castillo JR. Three approaches to the development of selective bilayer amperometric biosensors for glucose by in situ electropolymerization. Analyst. 1999;124(3):319-24.
[22]
Kranz C, Wohlschlager H, Schmidt H-L, Schuhmann W. Controlled electrochemical preparation of amperometric biosensors based on conducting polymer multilayers. Electroanalysis. 1998. 10(8):546-52.
[23]
L?tzbeyer T, Schuhmann W, Schmidt H-L. Electron transfer principles in amperometric biosensors: direct electron transfer between enzymes and electrode surface. Sensors and Actuators B: Chemical. 1996;33(1-3):50–4.
[24]
Yamato H, Koshiba T, Ohwa M, Wernet W, Matsumura M. A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors. Synthetic Metals. 1997;87(3):231–6.
[25]
Elrhazi M, Deslouis C, Nlgretto JM, Frouji A. Electrochemical behaviour of carbon paste electrode modified by fibrinogen for biosensor. An impedance study. Quim Anal. 1997; 16:49-53.
[26]
Immobilized enzymes: an introduction and applications in biotechnology. Ed. M. D. Trevan-New York: John Wiley and Sons, 1980.
[27]
Guilbault GG, Kramer DN. Fluorometric system employing immobilized cholinesterase for assaying anticholinesterase compounds. Anal Chem. 1965;37(13):1675-80.
[28]
Barlett PN, Cooper JM. A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem. 1993;362(1-2):1–12.
[29]
Naarmann H, Theophilou N. New process for the production of metal-like, stable polyacetylene. Synthetic Metals. 1987;22(1):1–8.
[30]
Kobayashi M, Chen J, Chung T-C, Moraes F, Heeger AJ, Wudl F. Synthesis and properties of chemically coupled poly(thiophene). Synthetic Metals. 1984;9(1):77–86.
[31]
Ratcliffe NM. Polypyrrole-based sensor for hydrazine and ammonia. Anal Chim Acta. 1990;239:257–62.
[32]
Sirkar KK, Lloyd DR. New membrane materials and processes for separation. AIChE Symp. Series. New York: Amer. Inst. Chem. Eng., 1988. Vol. 84(261): 177 p.
[33]
Slomkowski S, Kowalczyk M, Trznadel M, Kryszewski M. Two-Dimensional Latex Assemblies for Biosensors. Hydrogels and Biodegradable Polymers for Bioapplications. 1996;172–86.
[34]
Reddy SM, Vadgama PM. Membranes to improve amperometric sensor characteristics. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 111-35.
[35]
Grisel A. Microelectronic devices. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 137-47.
[36]
Scouten W, Luong J, Stephenbrown R. Enzyme or protein immobilization techniques for applications in biosensor design. Trends Biotechnol. 1995;13(5):178–85.
[37]
Hianik T, Snejdarkova M, Cervenanska Z, Miernik A, Krawczyk TKV. Electrochemical biosensors with supporte bilayer lipid membranes based on avidin-biotin interaction. Chem Analyt. 1997; 42: 901-6.
[38]
Chen Q, Kobayashi Y, Takeshita H, Hoshi T, Anzai J. Avidin-biotin system-based enzyme multilayer membranes for biosensor applications: optimisation of loading of choline esterase and choline oxidase in the bienzyme membrane for acetylcholine biosensors. Electroanalysis. 1998; 10(2): 94-7.
[39]
Yon Hin BFY, Lowe CR. Amperometric response of polypyrrole entrapped bienzyme films. Sensors and Actuators B: Chemical. 1992;7(1-3):339–42.
[40]
Cooper J., Hall EA. Electrochemical response of an enzyme-loaded polyaniline film. Biosens Bioelectron. 1992;7(7):473–85.
[41]
Dziadevich SV, Doldatkin AP, Rossokhatyĭ VK, Shram NF, Shul'ga AA, Strikha VI. [Amperometric enzyme biosensor with a glucose oxidase-polyaniline membrane]. Ukr Biokhim Zh. 1994;66(3):54-60.
[42]
Palleschi G, Moscone D, Compagnone D. Biosensori elettrochimici in Biomedicina. Caleidoscopio Italiano. Genova: MedicalSystems S.p.A., 1997; 112: 6.
[43]
Scheller FW, Pfeiffer D. Commercial devices based on amperometric biosensors. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 245-56.
[44]
EKSAN-G. Instructions for use and operation. Panev??ys, 1990.
[45]
Lauks IR. Microfabricated Biosensors and Microanalytical Systems for Blood Analysis. Acc Chem Res. 1998;31(5):317–24.
[46]
Pat. German 43 352413. Verfahren zur kontinuierlichen Analyse von Bestandteilen einer Flussigkeit. A. Schwock, P. Abel. Publ. 1991.
[47]
Armour JC, Lucisano JY, McKean BD, Gough DA. Application of chronic intravascular blood glucose sensor in dogs. Diabetes. 1990;39(12):1519-26.
[48]
Koudelka M, Rohner-Jeanrenaud F, Terrettaz J, Bobbioni-Harsch E, de Rooij NF, Jeanrenaud B. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosens Bioelectron. 1991;6(1):31-6.
[49]
Bradley J, Schmid RD. Optimisation of the biosensor for in situ fermentation monitoring of glucose concentration. Biosens Bioelectron. 1991;6(8):669–74.
[50]
Luong JH, Bouvrette P, Male KB. Developments and applications of biosensors in food analysis. Trends Biotechnol. 1997;15(9):369-77.
[51]
Freshness Meter from oriental electric Co. Ltd. Chemical Sensors. 1992. 8, N 1: 18.
[52]
Nagai R, Yaoita M, Yoshida Y, Ikariyama Y, Yamauchi S. High-performance biosensor for cholesterol. Proc. of 9th Chem. Sensor Symp. Aoyama: Gakuin Univ. press, 1989: 17-20.
[53]
Hikuma M, Yasuda T. Microbial sensors for estimation of biochemical oxygen demand and determination of glutamate. Methods Mosbach Enzymol. San Diego: Acad, press, 1998. Vol. 137, pt D: 124-31.
[54]
Riedel K, Neumann B, Scheller F. Mikrobielle Sensoren auf Basis von Respirationsmessungen. Chemie Ingenieur Technik. 1992;64(6):518–28.
[55]
White SF, Turner APF. Mediated amperometric biosensors. Handbook of biosensors and electronic noses: medicine, food, and environment. Ed. E. Kress-Rogers. New York: CRC press, 1997: 227-44.
[56]
Skladal P, Mascini M. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized cholinesterases. Biosens Bioelectron. 1992;7(5):335–43.
[57]
Gogol EV, Evtugyn GA, Marty JL, Budnikov HC, Winter VG. Amperometric biosensors based on nafion coated screen-printed electrodes for the determination of cholinesterase inhibitors. Talanta. 2000;53(2):379-89.