Biopolym. Cell. 2001; 17(6):459-466.
Огляди
Білкова інженерія
1Корнелюк О. І.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

В огляді стисло проаналізовано основні напрямки розвитку білкової інженери – нової галузі молекулярної біології і біотехнології, яка базується на досягненнях генної інженерії, структурної біології та комп'ютерних технологій. Білкова інженерія ставить своїм завданням направлену зміну струк­ури білків для надання їм нових чи зміни існуючих властиво­стей або створення білків de novo. Дизайн білка здійснюється на рівні його тривимірної структури з використанням ком­п'ютерних методів моделювання. Розглянуто метод сайт-спрямованого мутагенезу і його використання в білковій інженерії для структурно-функціонального аналізу білків. Представлено результати структурно-функціонального ана­лізу тирозил-тРНК синтетаз бактерій і ссавців методами білкової інженерії. Описано дизайн штучних білків de novo. Зроблено оцінку перспективам розвитку білкової інженерії, її використанню в біотехнології і медицині.

References

[1] Protein engineering and design. Ed. P. R. Carey New York: Acad, press, 1996.
[2] Concepts in protein engineering and design. Eds P. Wrede, G. Schneider. New York: Acad, press, 1994.
[3] Leatherbarrow RJ, Fersht AR. Protein engineering. Protein Eng. 1986;1(1):7-16. Review.
[4] Shao Z, Arnold FH. Engineering new functions and altering existing functions. Curr Opin Struct Biol. 1996;6(4):513-8.
[5] Gillam S, Smith M. Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: I. Optimum conditions and minimum ologodeoxyribonucleotide length. Gene. 1979;8(1):81-97.
[6] Zoller MJ, Smith M. Oligonucleotide-directed mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Res. 1982;10(20):6487-500.
[7] Boles E, Miosga T. A rapid and highly efficient method for PCR-based site-directed mutagenesis using only one new primer. Curr Genet. 1995;28(2):197-8.
[8] Barik S. Mutagenesis and gene fusion by megaprimer PCR. Methods in Molecular Biology, PCR Cloning Protocols. Ed. B. A. White. New York: Humana press, 1997. Vol. 67: 173-182.
[9] Moore JC, Arnold FH. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 1996;14(4):458-67.
[10] Fersht AR, Leatherbarrow RJ, Wells TNC. Quantitative analysis of structure–activity relationships in engineered proteins by linear free-energy relationships. Nature. 1986;322(6076):284–6.
[11] Wilkinson AJ, Fersht AR, Blow DM, Winter G. Site-directed mutagenesis as a probe of enzyme structure and catalysis: tyrosyl-tRNA synthetase cysteine-35 to glycine-35 mutation. Biochemistry. 1983;22(15):3581-6.
[12] Fersht AR, Shi J-P, Wilkinson AJ, Blow DM, Carter P, Waye MMY, et al. Analyse von Struktur-Aktivit?ts-Beziehungen bei Enzymen durch Protein-Engineering. Angewandte Chemie. 1984;96(7):455–62.
[13] Fersht AR, Knill-Jones JW, Bedouelle H, Winter G. Reconstruction by site-directed mutagenesis of the transition state for the activation of tyrosine by the tyrosyl-tRNA synthetase: a mobile loop envelopes the transition state in an induced-fit mechanism. Biochemistry. 1988;27(5):1581-7.
[14] First EA, Fersht AR. Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase. Biochemistry. 1993;32(49):13658-63.
[15] First EA, Fersht AR. Mutation of lysine 233 to alanine introduces positive cooperativity into tyrosyl-tRNA synthetase. Biochemistry. 1993;32(49):13651-7.
[16] Wells TN, Ho CK, Fersht AR. Free energy of hydrolysis of tyrosyl adenylate and its binding to wild-type and engineered mutant tyrosyl-tRNA synthetases. Biochemistry. 1986;25(21):6603-8.
[17] Wilkinson AJ, Fersht AR, Blow DM, Carter P, Winter G. A large increase in enzyme-substrate affinity by protein engineering. Nature. 1984 Jan 12-18;307(5947):187-8.
[18] Leatherbarrow RJ, Fersht AR, Winter G. Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering. Proc Natl Acad Sci U S A. 1985;82(23):7840-4.
[19] Ward WH, Fersht AR. Asymmetry of tyrosyl-tRNA synthetase in solution. Biochemistry. 1988;27(3):1041-9.
[20] Jones DH, McMillan AJ, Fersht AR, Winter G. Reversible dissociation of dimeric tyrosyl-tRNA synthetase by mutagenesis at the subunit interface. Biochemistry. 1985;24(21):5852-7.
[21] Bedouelle H, Winter G. A model of synthetase/transfer RNA interaction as deduced by protein engineering. Nature. 1986 Mar 27-Apr 2;320(6060):371-3.
[22] Labouze E, Bedouelle H. Structural and kinetic bases for the recognition of tRNATyr by tyrosyl-tRNA synthetase. J Mol Biol. 1989;205(4):729-35.
[23] Korneliuk AI, Kurochkin IV, Matsuka GKh. Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties. Mol Biol (Mosk). 1988;22(1):176-86.
[24] Kornelyuk A. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998; 14(4):349–59.
[25] Naidenov VG, Vudmaska MI, Kornelyuk AI, Matsuka GKh. Site-directed mutagenesis of lysine residues located in the connection peptide of the nucleotide-binding domain (Rossman fold) of tyrosyl-tRNA synthetase from bovine liver. Biopolym Cell. 2000; 16(4):275-80
[26] Gnatenko DV, Korneliuk AI, Lavrik OI. Chemical modification of lysine residues in tyrosyl-tRNA-synthetase from cattle liver using pyridoxal-5'-phosphate. Biokhimiia. 1991;56(11):1984-90.
[27] Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-72.
[28] Golub AG, Odynets KA, Nyporko AYu, Konelyuk AI. Structure modeling of the COOH-terminal cytokine-like module of the mammalian cytoplasmic tyrosyl-tRNA synthetase. Biopolym Cell. 2000; 16(6):515-24.
[29] Schwede T, Diemand A, Guex N, Peitsch MC. Protein structure computing in the genomic era. Res Microbiol. 2000;151(2):107-12.
[30] Peitsch MC, Schwede T, Guex N. Automated protein modelling--the proteome in 3D. Pharmacogenomics. 2000;1(3):257-66.
[31] Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 1994;7(11):1379-86.
[32] Declerck N, Joyet P, Trosset JY, Garnier J, Gaillardin C. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: multiple amino acid replacements and molecular modelling. Protein Eng. 1995;8(10):1029-37.
[33] Bruins ME, Janssen AE, Boom RM. Thermozymes and their applications: a review of recent literature and patents. Appl Biochem Biotechnol. 2001;90(2):155-86.
[34] Dolgikh DA, Kirpichnikov MP, Ptitsyn OB, Chemeris VV. Protein engineering of artificial proteins. Mol Biol (Mosk). 1996;30(2):261-72.
[35] Regan L, DeGrado WF. Characterization of a helical protein designed from first principles. Science. 1988;241(4868):976-8.
[36] Hecht MH, Richardson JS, Richardson DC, Ogden RC. De novo design, expression, and characterization of Felix: a four-helix bundle protein of native-like sequence. Science. 1990;249(4971):884-91.
[37] DeGrado WF, Wasserman ZR, Lear JD. Protein design, a minimalist approach. Science. 1989;243(4891):622-8.
[38] Dolgikh DA, Gilmanshin RI, Brazhnikov EV, Bychkova VE, Semisotnov GV, Venyaminov SYu, Ptitsyn OB. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981;136(2):311-5.
[39] Dolgikh DA, Kolomiets AP, Bolotina IA, Ptitsyn OB. 'Molten-globule' state accumulates in carbonic anhydrase folding. FEBS Lett. 1984;165(1):88-92.
[40] Ptitsyn OB. Motile globule state. Protein Folding. Ed. T. E. Creighton. New York: Freeman, 1992. 243-300.
[41] Dahiyat BI, Mayo SL. De novo protein design: fully automated sequence selection. Science. 1997;278(5335):82-7.
[42] Sasaki T, Kaiser ET. Helichrome: synthesis and enzymic activity of a designed hemeprotein. J Am Chem Soc. 1989;111(1):380–1.
[43] Ghadiri MR, Soares C, Choi C. Design of an artificial four-helix bundle metalloprotein via a novel ruthenium(II)-assisted self-assembly process. J Am Chem Soc. 1992;114(10):4000–2.
[44] Akerfeldt KS, Lear JD, Wasserman ZR, Chung LA, DeGrado WF. Synthetic peptides as models for ion channel proteins. Acc Chem Res. 1993;26(4):191–7.
[45] Dolgikh DA, Gabri?lian AE, Navolotskaia EV, Chemeris VV, Kirpichnikov MP. Artificial proteins with a given spatial structure and biological activity. Biofizika. 1993;38(1):67-74.
[46] Bornscheuer UT, Pohl M. Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol. 2001;5(2):137-43.
[47] McCafferty J, Glover DR. Engineering therapeutic proteins. Curr Opin Struct Biol. 2000;10(4):417-20.
[48] Hunt JA, Lesburg CA, Christianson DW, Thompson RB, Fierke CA. Active-site engineering of carbonic anhydrase and its application to biosensors. EXS. 2000;(90):221-40.
[49] Weinberger SR, Morris TS, Pawlak M. Recent trends in protein biochip technology. Pharmacogenomics. 2000;1(4):395-416.
[50] Isaacs JD. From bench to bedside: discovering rules for antibody design, and improving serotherapy with monoclonal antibodies. Rheumatology (Oxford). 2001;40(7):724-38.