Biopolym. Cell. 2001; 17(4):292-297.
Структура та функції біополімерів
Дослідження аміномодифікованої слюди як субстрату для атомно-силової мікроскопії нуклеїнових кислот
1, 2Лиманський О. П.
  1. Інститут мікробіології та імунології ім. І. І. Мечникова НАМН
    вул. Пушкінська, 14, Харків, Україна, 61057
  2. Університет штату Аризона, Відділ мікробіології
    Темпе, AZ 85287-2701, США

Abstract

Визначено сили адгезії аміномодифікованої (AП) слюди у вод­них розчинах за різних значень іонної сили (1) та рН за допомогою атомно-силової мікроскопії у режимі силових вимі­рювань. Значення сил адгезії для пари зонд–АП-слюда, отри­маної модифікацією у парах 3-амінопропілтриетоксисилана (АПТЕС), зменшувалися в ряду І–10 мМ → І – 100 мМ → рН 11,2. Стабільність АП-поверхні як матриці для зв'язування біомолекул було оцінено за допомогою якості АСМ зображень у повітрі лінійної ДНК фага λ та суперспіральної ДНК плазміди pUC8, іммобілізованих на АП-слюді. Найкращі зображен­ня ДНК було отримано на АП 1-слюді, тобто при модифікації слюди у парах АПТЕС протягом 1 год.

References

[1] Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930-933.
[2] Grigoryan LS, Narlikar AV, Samantha SB. Scanning tunneling microscopy imaging of C60 molecules. Fullerenes. Recent advances in the chemistry and physics of fullerenes and related materials. Eds K. Kadish, R. Ruoff. Pennington: The Electrochemical Society Inc., 1994: 1691-703.
[3] Lyubchenko Y, Lindsay SM, De Rose J, Thundat T. A technique for stable adhesion of DNA to a modified graphite surface for imaging by scanning tunneling microscopy. J Vac Sci Technol. 1991;(9(2): 1288-90.
[4] Kamensky YuV, Limanskaya OYu, Limansky AP. Imaging of oligonucleotides and DNA by scanning tunneling microscopy. Second Int. Conf. on Nanometer Scale Science and Technology (Moscow, August 2-6, 1993). Moscow, 1993: 128.
[5] Shlyakhtenko LS, Gall AA, Weimer JJ, Hawn DD, Lyubchenko YL. Atomic force microscopy imaging of DNA covalently immobilized on a functionalized mica substrate. Biophys J. 1999;77(1):568-76.
[6] Lyubchenko YL, Jacobs BL, Lindsay SM. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res. 1992;20(15):3983-6.
[7] Vezenov DV, Noy A, Rozsnyai LF, Lieber CM. Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy. J Am Chem Soc. 1997;119(8):2006–15.
[8] Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM. Functional group imaging by chemical force microscopy. Science. 1994;265(5181):2071-4.
[9] Moy VT, Florin EL, Gaub HE. Intermolecular forces and energies between ligands and receptors. Science. 1994;266(5183):257-9.
[10] Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996;93(8):3477-81.
[11] Hazel JL, Tsukruk VV. Spring constants of composite ceramic/gold cantilevers for scanning probe microscopy. Thin Solid Films. 1999;339(1-2):249–57.
[12] Butt HJ. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J. 1991;60(6):1438-44.
[13] Zhang H, He H-X, Wang J, Mu T, Liu Z-F. Force titration of amino group-terminated self-assembled monolayers using chemical force microscopy. Applied Physics A: Materials Science & Processing. 1998;66(7):S269–S271.
[14] Willemsen OH, Snel MM, Kuipers L, Figdor CG, Greve J, De Grooth BG. A physical approach to reduce nonspecific adhesion in molecular recognition atomic force microscopy. Biophys J. 1999;76(2):716-24.
[15] Tsukruk VV, Bliznyuk VN. Adhesive and friction forces between chemically modified silicon and silicon nitride surfaces. Langmuir. 1998;14(2):446–55.