Biopolym. Cell. 2001; 17(1):20-28.
Огляди
Молекулярно-генетичні аспекти зовнішньої та внутрішньої колонізації рослин корисними бактеріями
1Козировська Н. О.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Колонізація рослин корисними бактеріями є необхідною умовою успішного використання мікро­біологічних біопрепаратів, тому механізми взаємодії бактерій з рослинами (колонізація) вивча­ються на всіх рівнях, у тому числі молекулярному. Характеристики бактерій, які визначають їхню ризосферну компетентність (рухливість, швидкість росту, самозабезпечуваність аміно­кислотами, вітамінами, органічними кислотами та іншими чинниками живлення), надають їм перевагу в конкурентній боротьбі за виживання в ризосфері. Певну роль у процесі взаємодії бактерій з рослиною відіграють екзополісахариди та ліпополісахариди. В огляді наведено інфор­мацію щодо стану вивчення генетичної детермінації та регуляції чинників, які беруть участь у ризосферній та ендофітній колонізації перспективними для практики бактеріями.

References

[1] Davison J. Plant Beneficial Bacteria. Bio/Technology. 1988;6(3):282–6.
[2] Lugtenberg BJJ, de Weger LA, Bennett JW. Microbial stimulation of plant growth and protection from disease. Curr Opin Biotechnol. 1991;2(3):457–64.
[3] Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact. 1996;9(7):600-7.
[4] Hunter WJ, Fahring CJ. Movement by Rhizobium and modulation of nodules. Soil Biol Biochem. 1980; 12:538-43.
[5] Vande Broek A, Lambrecht M, Vanderleyden J. Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology. 1998;144 ( Pt 9):2599-606.
[6] De Weger LA, van der Vlugt CI, Wijfjes AH, Bakker PA, Schippers B, Lugtenberg B. Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol. 1987;169(6):2769-73.
[7] Howie WJ, Cook RJ, Welter DM. Effects of soil matric potential and cell motility on weat colonization by fluorescent pseudomonas suppressive to take-all. Phytopathology. 1987; 77(2):286—92.
[8] Scher FM, Kloepper JW, Singleton C, Zaleska I, Laliberte M. Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis, and generation time. Phytopathology. 1988; 78(8):105-9.
[9] Kozyrovska N, Alexeyev M, Kovtunovych G, Gun'kovska N, Kordyum V. Survival of Klebsiella oxytoca VN13 engineered to bioluminescence on barley roots during plant vegetation. Microb Releases. 1994; 2:261-5.
[10] Simons M, Permentier HP, de Weger LA, Wijffelman CA, Lugtenberg BJJ. Amino Acid Synthesis Is Necessary for Tomato Root Colonization by Pseudomonas fluorescens Strain WCS365 . Mol Plant Microbe Interact. 1997;10(1):102–6.
[11] Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, et al. Role of the O-Antigen of Lipopolysaccharide, and Possible Roles of Growth Rate and of NADH:ubiquinone Oxidoreductase ( nuo ) in Competitive Tomato Root-Tip Colonization by Pseudomonas fluorescens WCS365 . Mol Plant Microbe Interact. 1998;11(8):763–71.
[12] Lugtenberg B, Bloemberg G, Okon Y. Biotechnology of Biofertilization and Phytostimulation. Books in Soils, Plants, and the Environment. 1997;327–49.
[13] Anderson AJ, Habibzadegah-Tari P, Tepper CS. Molecular Studies on the Role of a Root Surface Agglutinin in Adherence and Colonization by Pseudomonas putida. Appl Environ Microbiol. 1988;54(2):375-80.
[14] Matthysse AG, McMahan S. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol. 1998;64(7):2341-5.
[15] Roberts DP, Marty AM, Dery PD, Hartung JS. Isolation and modulation of growth of a colonization-impaired strain of Enterobacter cloacae in cucumber spermosphere. Can J Microbiol. 1996;42(2):196-201.
[16] Roberts DP, Dery PD, Yucel I, Buyer J, Holtman MA, Kobayashi DY. Role of pfkA and general carbohydrate catabolism in seed colonization by Enterobacter cloacae. Appl Environ Microbiol. 1999;65(6):2513-9.
[17] Palumbo JD, Kado CI, Phillips DA. An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol. 1998;180(12):3107-13.
[18] Savka MA, Farrand SK. Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol. 1997;15(4):363-8.
[19] Anraku Y, Gennis RB. The aerobic respiratory chain of Escherichia coli. Trends Biochem Sci. 1987;12:262–6.
[20] Dekkers LC, Bloemendaal CJ, de Weger LA, Wijffelman CA, Spaink HP, Lugtenberg BJ. A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact. 1998;11(1):45-56.
[21] Comeau DE, Ikenaka K, Tsung KL, Inouye M. Primary characterization of the protein products of the Escherichia coli ompB locus: structure and regulation of synthesis of the OmpR and EnvZ proteins. J Bacteriol. 1985;164(2):578-84.
[22] Makino K, Shinagawa H, Amemura M, Nakata A. Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J Mol Biol. 1986;190(1):37-44.
[23] Pereg-Gerk L, Paquelin A, Gounon P, Kennedy IR, Elmerich C. A transcriptional regulator of the LuxR-UhpA family, FlcA, controls flocculation and wheat root surface colonization by Azospirillum brasilense Sp7. Mol Plant Microbe Interact. 1998;11(3):177-87.
[24] Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJ. A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acad Sci U S A. 1998;95(12):7051-6.
[25] Kozyrovska NO. Interaction of endophytic bacteria with the plant on cellular and molecular level. Biopolym Cell. 1998; 14(6):488-99.
[26] Vermeiren H, Willems A, Schoofs G, de Mot R, Keijers V, Hai W, Vanderleyden J. The rice inoculant strain Alcaligenes faecalis A15 is a nitrogen-fixing Pseudomonas stutzeri. Syst Appl Microbiol. 1999;22(2):215-24.
[27] Reinhold B, Hurek T, Fendrik I. Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of kallar grass. Appl Environ Microbiol. 1987;53(4):889-91.
[28] Dobereiner J, Reis VM, Paula MA, Olivares F. Endophytic diazotrophs in sugar cane, cereals and tuber plants. New horizons in nitrogen fixation: Proc. 9th Int. Congr. Nitrogen Fixation (6-12 December 1992, Cancun, Mexico). Eds R. Palasios, J. Mora, W. E. Newton. Dordrecht: Kluwer, 1993;671-5.
[29] James EK, Reis VM, Olivares FL, Baldani JI, D?bereiner J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot. 1994;45(6):757–66.
[30] Pimentel JP, Olivares F, Pitard RM, Urquiaga S, Akiba F, D?bereiner J. Dinitrogen fixation and infection of grass leaves byPseudomonas rubrisubalbicans andHerbaspirillum seropedicae. Plant Soil. 1991;137(1):61-5.
[31] You C, Zhou F. Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol. 1989;35(3):403–8.
[32] Patriquin DG, D?bereiner J. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol. 1978;24(6):734–42.
[33] Nguen TH, Ton TB, Tarasenko VA, Kozyrovskaya NA. Enterobacteria colonization of nitrogen-fixing root tissue of rice. Molecular. and genet. mechanisms of interaction between microorganisms and plants. Pushchino, 1989;209-214.
[34] Gardner JM, Feldman AW, Zablotowicz RM. Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol. 1982;43(6):1335-42.
[35] Lamb TG, Tonkyn DW, Kluepfel DA. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue . Can J Microbiol. 1996;42(11):1112–20.
[36] Hinton DM, Bacon CW. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia. 1995;129(2):117-25.
[37] Jefferson RA. The GUS reporter gene system. Nature. 1989;342(6251):837-8.
[38] O'Callaghan K, Webster G, Batchelor C, Davey M, Denarie J, Cooking E. Infection of Sesbania rostrata by Azorhizobium caulinodans ORS571 with a lacZ reporter gene. Biol. Fixation of Nitrogen for Ecology and Sustainable Agriculture: Abstrs book. Poznan, 1996; 89.
[39] Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802-5.
[40] Wilson K, Jefferson R. b-Glucuronidase (GUS) as a marker to study plant-microbe interactions. 2nd Int. Workshop on PGPR (October 14-19, Switzerland). Interlaken, 1990;69.
[41] Reinhold-Hurek M, Hurek T. Capacities of Azoarcus sp., a new genus of grass-associated diazotrophs. New horizons in nitrogen fixation: Proc. 9th Int. Congr. Nitrogen Fixation (6—12 December 1992, Cancun, Mexico). Eds R. Palasios, J. Mora, W. E. Newton. Dordrecht: Kluwer, 1993; 691-4.
[42] James EK, Reis VM, Olivares FL, Baldani JI, D?bereiner J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus . J Exp Bot.1994;45(6):757–66.
[43] Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol. 1993;175(21):7056-65.
[44] Quadt-Hallmann A, Kloepper JW. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species . Can J Microbiol. 1996;42(11):1144–54.
[45] Hazlewood GP, Gilbert HJ. Structure and function analysis of Pseudomonas plant cell wall hydrolases. Prog Nucleic Acid Res Mol Biol. 1998;61:211-41.
[46] Fontes CM, Clarke JH, Hazlewood GP, Fernandes TH, Gilbert HJ, Ferreira LM. Identification of tandemly repeated type VI cellulose-binding domains in an endoglucanase from the aerobic soil bacterium Cellvibrio mixtus. Appl Microbiol Biotechnol. 1998;49(5):552-9.
[47] Starr MP, Chatterjee AK. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389-426.
[48] Von Riesen VL. Pectinolytic, indole-positive strains of Klebsiella pneumoniae. Int J Syst Bacteriol. 1976;26(2):143–5.
[49] Nasser W, Awad? AC, Reverchon S, Robert-Baudouy J. Pectate lyase from Bacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Lett. 1993;335(3):319-26.
[50] Bekri MA, Desair J, Keijers V, Proost P, Searle-van Leeuwen M, Vanderleyden J, Vande Broek A. Azospirillum irakense produces a novel type of pectate lyase. J Bacteriol. 1999;181(8):2440-7.
[51] Liao CH. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol. 1989;55(7):1677-83.
[52] Starr MP, Chatterjee AK, Starr PB, Buchanan GE. Enzymatic degradation of polygalacturonic acid by Yersinia and Klebsiella species in relation to clinical laboratory procedures. J Clin Microbiol. 1977;6(4):379-86.
[53] Walker MJ, Pemberton JM. Construction of a transposon containing a gene for polygalacturonate trans-eliminase from Klebsiella oxytoca. Arch Microbiol. 1987;146(4):390-5.
[54] Kovtunovych GL, Lar OV, Kordyum VA, Kleiner D, Kozyrovska NO. Enhancing the internal plant colonization rate with endophytic nitrogen-fixing bacteria. Biopolym Cell. 1999; 15(4):300-5.
[55] Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N. Correlation between pectate lyase activity and ability to penetrate into plant tissues by diazotrophic Klebsiella oxytoca VN 13. Plant Soil. 1999; 260: 1-6.
[56] Kovtunovich GV, Lar OV, Kozyrovska NO. Cloning and structural analysis of the Klebsiella oxytoca VN13 peh gene. Biopolym Cell. 2000; 16(5):356-62.
[57] Bassler BL. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol. 1999;2(6):582-7.
[58] Engebrecht J, Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A. 1984;81(13):4154-8.
[59] Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176(2):269-75.
[60] Ochsner UA, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 1995;92(14):6424-8.
[61] Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol. 1997;24(5):895-904.
[62] Freeman JA, Lilley BN, Bassler BL. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol. 2000;35(1):139-49.
[63] Bossier BL. A multichannel two-component signaling relay controls quorum sensing in Vibrio harvey. In: Cell-Cell Signaling in Bacteria. Ed. G. M. Dunny, S. C. Winans. Washington DC: ASM press, 1999: 259-73.
[64] Freeman JA, Bassler BL. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol. 1999;31(2):665-77.
[65] Freeman JA, Bassler BL. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol. 1999;181(3):899-906.
[66] Surette MG, Miller MB, Bassler BL. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A. 1999;96(4):1639-44.
[67] Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact. 1998;11(11):1119-29.
[68] Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology. 1999;145 ( Pt 2):283-91.
[69] Fray RG, Throup JP, Daykin M, Wallace A, Williams P, Stewart GS, Grierson D. Plants genetically modified to produce N-acylhomoserine lactones communicate with bacteria. Nat Biotechnol. 1999;17(10):1017-20.