Biopolym. Cell. 1999; 15(2):122-132.
Огляди
Розвиток трансформаційних систем вектор– господар для клонування та експреси генетичного матеріалу у неконвенційних дріжджів
1Вороновський А. Я., 1Сибірний А. А.
  1. Відділення регуляторних систем клітини Інституту біохімії ім. О. В. Палладіна НАН України
    вул. Драгоманова 14/16, Львів, Україна, 79005

Abstract

Розглянуто особливості конструювання систем генетичної трансформації дріжджів. Описано розвиток таких систем для окремих видів неконвенційних дріжджів. Показано фундаментальне та прикладне значення розроблених дріжджових систем вектор – господар.

References

[1] Cregg JM, Madden KR. Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichia pastoris by gene disruption. Biological research on industrial yeasts. Eds GG Stewart, I Russel, RD Klein, RR Hiebsch. Boca Raton: CRC press, 1987:1-18.
[2] Chattoo BB, Sherman F, Azubalis DA, Fjellstedt TA, Mehnert D, Ogur M. Selection of lys2 Mutants of the Yeast Saccharomyces cerevisiae by the Utilization of alpha-aminoadipate. Genetics. 1979;93(1):51-65.
[3] Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345-6.
[4] Das S, Hollenberg CP. A high-frequency transformation system for the yeast Kluyveromyces lactis. Curr Genet. 1982;6(2):123-8.
[5] Das S, Kellermann E, Hollenberg CP. Transformation of Kluyveromyces fragilis. J Bacteriol. 1984;158(3):1165-7.
[6] Kunze G, Petzoldt C, Bode R, Samsonova I, Hecker M, Birnbaum D. Transformation of Candida maltosa and Pichia guilliermondii by a plasmid containing Saccharomyces cerevisiae ARG4 DNA. Curr Genet. 1985;9(3):205-9.
[7] Cregg JM, Barringer KJ, Hessler AY, Madden KR. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985;5(12):3376-85.
[8] Beach D, Nurse P. High-frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature. 1981;290(5802):140-2.
[9] Nonconventional Yeasts in Biotechnology. Ed. K. Wolf. Berlin: Springer, 1996. 617 p.
[10] Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet. 1984;198(1):179-82.
[11] Boy-Marcotte E, Vilaine F, Camonis J, Jacquet M. A DNA sequence from Dictyostelium discoideum complements ura3 and ura5 mutations of Saccharomyces cerevisiae. Mol Gen Genet. 1984;193(3):406-13.
[12] Zakal'skii AE, Zlochevskii ML, Stasiv IuZ, Logvinenko EM, Beburov MIu, Shavlovskii GM. Cloning of the RIB1 gene coding for the enzyme of the first stage of flavinogenesis in the yeast Pichia guilliermondi, GTP cyclohydrolase, in Escherichia coli cells. Genetika. 1990;26(4):614-20.
[13] Logvinenko EM, Stasiv IuZ, Zlochevskii ML, Voronovskii AIa, Beburov MIu, Shavlovskii GM. Cloning of the RIB7 gene encoding the riboflavin synthase of the yeast Pichia guilliermondii]. Genetika. 1993;29(6):922-7.
[14] Beggs JD. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978;275(5676):104-9.
[15] Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979;76(3):1035-9.
[16] Stillman B. DNA replication. Replicator renaissance. Nature. 1993;366(6455):506-7.
[17] Rowley A, Dowell SJ, Diffley JF. Recent developments in the initiation of chromosomal DNA replication: a complex picture emerges. Biochim Biophys Acta. 1994;1217(3):239-56.
[18] Webster TD, Dickson RC. Direct selection of Saccharomyces cerevisiae resistant to the antibiotic G418 following transformation with a DNA vector carrying the kanamycin-resistance gene of Tn903. Gene. 1983;26(2-3):243-52.
[19] Gritz L, Davies J. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae. Gene. 1983;25(2-3):179-88.
[20] Cohen JD, Abrams E, Eccleshall TR, Buchferer B, Marmur J. Expression of a prokaryotic gene in yeast: isolation and characterization of mutants with increased expression. Mol Gen Genet. 1983;191(3):451-9.
[21] Miyajima A, Miyajima I, Arai K, Arai N. Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell Biol. 1984;4(3):407-14.
[22] Rine J, Hansen W, Hardeman E, Davis RW. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA. 1983;80(22):6750-4.
[23] Falco SC, Dumas KS. Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl. Genetics. 1985;109(1):21-35.
[24] Wesolowski-lMuvel M, Breunig KD Fukuhara H. Kluyveromyces lactis II Noriconventiorial yeast in biotechnology. Ed. K Wolf. Berlin: Springer, 1996:139—201.
[25] Bianchi MM, Falcone C, Re CX, Wesolowski-Louvel M, Frontali L, Fukuhara H. Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 m circular plasmid pKD1. Curr. Genet. 1987; 12(3):185—192.
[26] van den Berg JA, van der Laken KJ, van Ooyen AJ, Renniers TC, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology (N Y). 1990;8(2):135-9.
[27] Yeh P, Landais D, Lemaître M, Maury I, Crenne JY, Becquart J, Murry-Brelier A, Boucher F, Montay G, Fleer R, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci U S A. 1992;89(5):1904-8.
[28] Sreekrishtm K, Kropp KE. Pichia pastoris. Nonconventional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996:203—253.
[29] Ellis SB, Brust PF, Koutz PJ, Waters AF, Harpold MM, Gingeras TR. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol. 1985;5(5):1111-21.
[30] Shen S, Sulter G, Jeffries TW, Cregg JM. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene. 1998;216(1):93-102.
[31] Roggenkamp R, Hansen H, Eckart M, Janowicz Z, Hoilenberg CP. Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet. 1986 202(2):302-308.
[32] Tikhomirova LP, Ikonomova RN, Kuznetsova EN. Evidence for autonomous replication and stabilization of recombinant plasmids in the transformants of yeast Hansenula polymorpha. Curr Genet. 1986;10(10):741-7.
[33] Gleeson MA, Ortori GS, Sudbery PE. Transformation of the Methylotrophic Yeast Hansenula polymorpha. Microbiology. 1986; 132(12):3459—65.
[34] Tikhomirova LP, Ikonomova RN, Kuznetsova EN, Fodor II, Bystrykh LV, Aminova LR, Trotsenko YuA. Transformation of methylotrophic yeast Hansenula polymorpha: cloning and expression of genes. J Basic Microbiol. 1988;28(5):343-51.
[35] Faber KN, Haima P, Harder W, Veenhuis M, AB G. Highly-efficient electrotransformation of the yeast Hansenula polymorpha. Curr Genet. 1994;25(4):305-10.
[36] Berardi E, Thomas DY. An effective transformation method for Hansenula polymorpha. Curr Genet. 1990 18(2):169—170.
[37] Bogdanova AI, Agaphonov MO, Ter-Avanesyan MD. Plasmid reorganization during integrative transformation in Hansenula polymorpha. Yeast. 1995;11(4):343-53.
[38] Hansen H, Hollenberg CP. Hansenula polymorpha (Pichia angusta) 11 Nontonveritional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996:293—311.
[39] Gellissen G, Weydemann U, Strasser AW, Piontek M, Janowicz ZA, Hollenberg CP. Progress in developing methylotrophic yeasts as expression systems. Trends Biotechnol. 1992;10(12):413-7.
[40] Takagi M, Kawai S, Chang MC, Shibuya I, Yano K. Construction of a host-vector system in Candida maltosa by using an ARS site isolated from its genome. J Bacteriol. 1986;167(2):551-5.
[41] Kawai S, Hwang CW, Sugimoto M, Takagi M, Yano K. Subcloning and nucleotide sequencing of an ARS site of Candida maltosa which also functions in Saccharomyces cerevisiae. Agric Biol Chem. 1987; 51(6):1587—91.
[42] Sasnauskas K, Jomantienè R, Lebedienè E, Lebedys J, Januska A, Janulaitis A. Molecular cloning and analysis of autonomous replicating sequence of Candida maltosa. Yeast. 1992;8(4):253-9.
[43] Ohkuma M, Kobayashi K, Kawai S, Hwang CW, Ohta A, Takagi M. Identification of a centromeric activity in the autonomously replicating TRA region allows improvement of the host-vector system for Candida maltosa. Mol Gen Genet. 1995;249(4):447-55.
[44] Mauersberger S, Ohkuma M, Schunek WH, Takagi M. Candida maltosa II Nonconventional yeasts in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996:411—580.
[45] Kunze G, Bode R, Schmidt H, Samsonova IA, Birnbaum D. Identification of a lys2 mutant of Candida maltosa by means of transformation. Curr Genet. 1987;11(5):385-91.
[46] Sasnauskas K, Jomantiene R, Januska A, Lebediene E, Lebedys J, Janulaitis A. Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene. 1992;122(1):207-11.
[47] Sasnauskas K, Jomantiene R, Lebediene E, Lebedys J, Januska A, Janulaitis A. Cloning and sequence analysis of a Candida maltosa gene which confers resistance to cycloheximide. Gene. 1992;116(1):105-8.
[48] Masuda Y, Park SM, Ohkuma M, Ohta A, Takagi M. Expression of an endogenous and a heterologous gene in Candida maltosa by using a promoter of a newly-isolated phosphoglycerate kinase (PGK) gene. Curr Genet. 1994;25(5):412-7.
[49] Sugiyama H, Ohkuma M, Masuda Y, Park SM, Ohta A, Takagi M. In vivo evidence for non-universal usage of the codon CUG in Candida maltosa. Yeast. 1995;11(1):43-52.
[50] Dohmen RJ, Hollenberg CP. Schwanniomyces occidentalis I Noriconventional yeasts in biotechnology. Ed. K Wolf. Berlin: Springer, 1996:117—137.
[51] Klein RD, Favreau MA. Transformation of Schwanniomyces occidentalis with an ADE2 gene cloned from S. occidentalis. J Bacteriol. 1988;170(12):5572-8.
[52] Klein RD, Favreau MA. A DNA fragment containing the ADE2 gene from Schwanniomyces occidentalis can be maintained as an extrachromosomal element. Gene. 1991;97(2):183-9.
[53] Dohmen RJ, Strasser AW, Zitomer RS, Hollenberg CP. Regulated overproduction of alpha-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis. Curr Genet. 1989;15(5):319-25.
[54] Dohmen RJ, Strasser AW, Dahlems UM, Hollenberg CP. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene. 1990;95(1):111-21.
[55] Klein RD, Poorman RA, Favreau MA, Shea MH, Hatzenbuhler NT, Nulf SC. Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis. Curr Genet. 1989;16(3):145-52.
[56] Strasser AW, Selk R, Dohmen RJ, Niermann T, Bielefeld M, Seeboth P, Tu GH, Hollenberg CP. Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. Eur J Biochem. 1989;184(3):699-706.
[57] Claros MG, Abarca D, Fernandez-Lobato M, Jimenez A. Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis. Curr Genet. 1993;24(1-2):75-83.
[58] Piredda S, Gaillardin C. Development of a transformation system for the yeast Yamadazyma (Pichia) ohmeri. Yeast. 1994;10(12):1601-12.
[59] Barth G, Gaillardin C. Yarrowia lipolytica Il Nonconventional yeast in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996:313—388.
[60] Xuan J-W, Fournier P, Gaillardin C. Cloning of the LYS5 gene encoding saccharopine dehydrogenase from the yeast Yarrowia lipolytica by target integration. Curr Genet. 1988. 14(1):15—21.
[61] Fournier P, Abbas A, Chasles M, Kudla B, Ogrydziak DM, Yaver D, Xuan JW, Peito A, Ribet AM, Feynerol C, et al. Colocalization of centromeric and replicative functions on autonomously replicating sequences isolated from the yeast Yarrowia lipolytica. Proc Natl Acad Sci U S A. 1993;90(11):4912-6.
[62] Gaillardin C, Ribet AM. LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in Yarrowia lipolytica. Curr Genet. 1987;11(5):369-75.
[63] Nicaud JM, Fabre E, Gaillardin C. Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet. 1989;16(4):253-60.
[64] Buckholz RG, Gleeson MA. Yeast systems for the commercial production of heterologous proteins. Biotechnology (N Y). 1991;9(11):1067-72.
[65] Sibirny AA. Pichia guilliermondii. Nonconventional yeast in biotechnology. Ed. K. Wolf. Berlin: Springer, 1996:255—275.
[66] Boretsky Y, Voronovsky A, Liuta-Tehlivets O, Hasslacher M, Kohlwein SD, Shavlovsky GM. Identification of an ARS element and development of a high efficiency transformation system for Pichia guilliermondii. Curr Genet. 1999;36(4):215-21.
[67] Liauta-Teglivets O, Hasslacher M, Boretskii IuR, Kohlwein SD, Shavlovskii GM. Molecular cloning of the GTP-cyclohydrolase structural gene RIB1 of Pichia guilliermondii involved in riboflavin biosynthesis. Yeast. 1995;11(10):945-52.