Biopolym. Cell. 1998; 14(4):360-370.
Внутрішньомолекулярні водневі зв'язки та структурна нежорсткісті піримідинових нуклеозидів
1Міщук Я. Р., 1Говорун Д. М.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Оптимізовані структури цитидину, уридину і тимідину, їхніх дезоксирибо-аналогів та деяких О5', О3'-депротонованих похідних отримані за допомогою напівемпіричного квантовохімічного методу MNDO/H. Виявлено сітки внутрішньомолекулярних водневих зв'язків піримідинових нуклеозидів та вивчено їхній вплив на. стереохімічну структуру молекул (зокрема, на стабільність anti-конформації), фізико-хімічіні параметри /теплоту утворення, дипольний момент, потенціал, іонізації та розподіл зарядів), а також на динамічні характеристики піримідинових нуклеозидів (бар'єри інтер конверсії, частоти торсійних коливань). Обговорюється присутність внушріишьомолекулярних водневих зв'язків у полі нуклеоіпидах та їхнє значения у формуванні, структури та нелінійної динаміки нуклеїнових кислот.

References

[1] Mishchuk YaR. Investigation of the physico-chemical nature of elementary acts of protein-nucleic acid and nucleic acid-nucleic acid recognition on the model systems of low molecular weight. Ph. D. Thesis. Kiev, 1993. 21 p.
[2] De Leeuw HPM, Haasnoot CAG, Altona C. Empirical correlations between conformational parameters in ?-D-furanoside fragments derived from a statistical survey of crystal structures of nucleic acid constituents full description of nucleoside molecular geometries in terms of four parameters. Isr J Chem. 1980;20(1-2):108–26.
[3] Holbrook SR, Kim SH. Local mobility of nucleic acids as determined from crystallographic data. I. RNA and B form DNA. J Mol Biol. 1984;173(3):361-88.
[4] Van Lier JJ, Smits MT, Buck HM. B-Z transition in methylated DNA. A quantum-chemical study. Eur J Biochem. 1983;132(1):55-62.
[5] Gabb A, Harvey S. Conformational transitions in potential and free energy space for furanoses and 2'-deoxynucleosides. J Am Chem Soc. 1993; 115(10): 4218-27.
[6] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[7] Emerson J, Sundaralingam M. Structure of the potassium salt of the modified nucleotide dihydrouridine 3'-monophosphate hemihydrate: correlation between the base pucker and sugar pucker and models for metal interactions with ribonucleic acid loops. Acta Cryst. 1980. 36(3): 537-543.
[8] Schweizer MP, Broom AD, Ts'o PO, Hollis DP. Studies of inter- and intramolecular interaction in mononucleotides by proton magnetic resonance. J Am Chem Soc. 1968;90(4):1042-55.
[9] Jack A, Ladner JE, Klug A. Crystallographic refinement of yeast phenylalanine transfer RNA at 2-5A resolution. J Mol Biol. 1976;108(4):619-49.
[10] Furberg S, Peterson CS, R?mming C. A refinement of the crystal structure of cytidine. Acta Cryst. 1965;18(3):313–20.
[11] Lively TN, Jurema MW, Shields GC. Hydrogen bonding of nucleotide base pairs: Application of thePM3 method. Int J Quant Chem. 1994;52(S21):95–107.
[12] Amidon GL, Anik S, Rulnn J. An energy partitioning analysis of base-sugar intramolecular C-H...O hydrogen bonding in nucleosides and nucleotides. Structure and conformation of nucleic acids and protein-nucleic acid interactions. Eds M. Sundaralingam, S. T. Rao. Baltimore: Univ. Park press, 1975: 729-44.
[13] Ts'o POP. Dinucleoside monophosphates, dinucleotides, and oligonucleotides. Basic principles in nucleic acid chemistry Ed. P. O. P. Ts'o. New York: Acad, press, 1974; Vol. 2: 305-469.
[14] June Sutor D. The C–H… O Hydrogen bond in crystals. Nature. 1962;195(4836):68–9.
[15] Bruskov VI, Bushuev VN, Poltev VI. [Nuclear magnetic resonance study of C--H...O type hydrogen bonds in analogs of nucleic acid base]. Mol Biol (Mosk). 1980;14(2):316-22.
[16] Govorun DM, Kondratyuk IV, Zheltovsky NV. Nucleotide bases as CH-Acids. Biopolym Cell. 1995; 11(5):15-20.
[17] Hovorun DM, Mishchuk YaR, Kondratyuk IV. On a quantum-chemical nature of a stereochemical nonrigidity of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):5-12.
[18] Govorun DM, Mishchuk YaR, Kondratyuk IV, Zlieltovsky MV. Intramolecular cooperative hydrogen bonds in nucleotide bases. Dopovidi Nats Akad Nauk Ukrainy. 1996;(8):141-4.
[19] Govorun DN, Danchuk VD, Mishchuk YR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. AM1 calculation of the nucleic acid bases structure and vibrational spectra. J Mol Struct. 1992;267:99–103.
[20] Bureiko SF, Oktiabr'skii VL. [Investigation of the kinetics of proton transfer reactions in solution by stopped-flow]. Kinetika i Kataliz. 1986; 27(3):565-9.
[21] Bureiko SF, Golubev NS, Pihlaja K, Mattinen J. Formation of bifurcate hydrogen bonds in complexes of di-ortho-substituted phenols in solution. J Struct Chem. 1991;32(1):70–4.
[22] Govorun DM, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Zheltovsky MV. About nonplanarity and dipole nonstability of canonical nucleotide bases methylated at the glycoside nitrogen. Dopovidi Nats Akad Nauk Ukrainy. 1995; (6):117-9.
[23] Komasa J, Szalewicz K, Leszczy?ski J. Does the methyl group form a hydrogen bond? Ab initio post-Hartree–Fock study on ethane–hydrogen cyanide complex. Chem Phys Lett.1998;285(5-6):449–54.
[24] Kuchler E, Derkosch J. Infrarot-spektroskopische Untersuchung der Assoziation von Nucleosid-Derivaten in L?sung: Nachweis der Bildung durch Wasserstoffbr?cken gebundener Basenpaare. Z Naturforschung. 1966; 21b(3):209-16.
[25] Young PR, Kallenbach NR. Secondary structure in polyuridylic acid. Non-classical hydrogen bonding and the function of the ribose 2'-hydroxyl group. J Mol Biol. 1978;126(3):467-79.
[26] Follmann H, Pfeil R, Witzel H. Pyrimidine nucleosides in solution. A study of intramolecular forces by proton magnetic resonance spectroscopy. Eur J Biochem. 1977;77(3):451-61.
[27] Jeffrey GA, Maluszynska H, Mitra J. Hydrogen bonding in nucleosides and nucleotides. Int J Biol Macromol. 1985;7(6):336–48.
[28] Jeffrey GA, Saenger W. Hydrogen bonding in biological systems. Berlin: Springer, 1994. 569 p.
[29] Samijlenko SP, Alexeeva IV, Palchykivs'ka LH, Kondratyuk IV, Stepanyugin AV, Shalamay AS, Hovorun DM. Structural features of 6-azacytidine and its derivatives: data of NMR and IR spectroscopies. Biopolym Cell. 1997; 13(6):445-52.
[30] Sponer J, Hobza P, Leszczinski J. Interactions of DNA bases and the structure of DNA. A nonempirical ab initio study with inclusion of electron correlation. Computational Chemistry. Review of current trends. Ed. J. Leszczynski. Singapore; London: World Sci., 1996. Vol. 1: 271 p.
[31] Hovorun DM, Mishchuk YaR, Kondratyuk IV. Topological features of potential energy hypersurface of canonical nucleotide bases. Biopolym Cell. 1996; 12(5):13-7.
[32] Sponer J, Leszczynski J, Hobza P. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. J Biomol Struct Dyn. 1996;14(1):117-35.
[33] Levitt M, Warshel A. Extreme conformational flexibility of the furanose ring in DNA and RNA. J Am Chem Soc. 1978;100(9):2607–13.
[34] Hovorun DM. On the microstructural origin of the linear DNA curvature. Dopovidi Nats Akad Nauk Ukrainy. 1998; (5):189-95.
[35] Bolton PH, Kearns DR. Hydrogen bonding of the 2' OH in RNA. Biochim Biophys Acta. 1978;517(2):329-37.
[36] Rabczenko A, Shugar D. Hydrogen bonding scheme involving ribose 2'-hydroxyls in polyribouridylic acid. Acta Biochim Pol. 1972;19(1):89-91.