Biopolym. Cell. 1998; 14(3):177-183.
Огляди
Ченелінг у білковому синтезі
1Негруцький Б. С.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Здійснено огляд літературних та отриманих автором даних стосовно ченелінгу тРНК в еукаріотичному білковому синтезі Запропоновано гіпотезу щодо ролі GDP- і GTP-форм фактора елонгації 1 а у переносі тРНК/аміноацил-тРНК між компонентами апарату трансляції.

References

[1] Ottaway JH. Compartmentation: model and reality. Biochem Soc Trans. 1983;11(1):47-52.
[2] Ottaway JR. Comments on metabolic compartmentation and soluble metabolic pathways. BioEssays. 1984; 1(6):283-4.
[3] Srere PA. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89-124. Review.
[4] Fell D. Understanding the control of metabolism. Ed. K. Snell. London-Miami: Portland press, 1997.
[5] Spivey HO, Merz JM. Metabolic compartmentation. Bioessays. 1989;10(4):127-30.
[6] Spirin AS. Energetics and Dynamics of the protein synthesizing system. Usp Biol Khim. 1989; 30: 3-24.
[7] Deutscher MP. The eucaryotic aminoacyl-tRNA synthetase complex: suggestions for its structure and function. J Cell Biol. 1984;99(2):373-7.
[8] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[9] Negrutskii BS. Transfer RNA as a factor of the protein homeostasis regulation. Biopolym Cell. 1989; 5(5):5-18.
[10] Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[11] Negrutskii BS, Stapulionis R, Deutscher MP. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994;91(3):964-8.
[12] Negrutskii BS, Deutscher MP. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc Natl Acad Sci U S A. 1992;89(8):3601-4.
[13] Robertson JM, Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987;196(3):525-40.
[14] Graf H. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1976;425(2):175-84.
[15] Sana Sara, Mozuraitis RJ, Kharchenko OV, Ivanov LL, Turkovskaya GV, Martinkus ZP, Kovalenko MI, El'skaya AV. Interaction of eukaryotic aminoacyl-tRNA synthetases with ribosomes. Biopolym Cell. 1992; 8(1):101-7.
[16] Kudlicki W, Coffman A, Kramer G, Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101-8.
[17] Stapulionis R, Deutscher MP. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995;92(16):7158-61.
[18] Petrushenko ZM, Negrutskii BS, Ladokhin AS, Budkevich TV, Shalak VF, El'skaya AV. Evidence for the formation of an unusual ternary complex of rabbit liver EF-1alpha with GDP and deacylated tRNA. FEBS Lett. 1997;407(1):13-7.
[19] Negrutskii BS, Budkevich TV, Shalak VF, Turkovskaya GV, El'Skaya AV. Rabbit translation elongation factor 1 alpha stimulates the activity of homologous aminoacyl-tRNA synthetase. FEBS Lett. 1996;382(1-2):18-20.
[20] Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995;270(5241):1464-72.
[21] Goldgur Y, Mosyak L, Reshetnikova L, Ankilova V, Lavrik O, Khodyreva S, Safro M. The crystal structure of phenylalanyl-tRNA synthetase from thermus thermophilus complexed with cognate tRNAPhe. Structure. 1997;5(1):59-68.
[22] Reed VS, Wastney ME, Yang DC. Mechanisms of the transfer of aminoacyl-tRNA from aminoacyl-tRNA synthetase to the elongation factor 1 alpha. J Biol Chem. 1994;269(52):32932-6.
[23] Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem. 1997;272(51):32206-10.
[24] Bec G, Kerjan P, Zha XD, Waller JP. Valyl-tRNA synthetase from rabbit liver. I. Purification as a heterotypic complex in association with elongation factor 1. J Biol Chem. 1989;264(35):21131-7.
[25] Bec G, Kerjan P, Waller JP. Reconstitution in vitro of the valyl-tRNA synthetase-elongation factor (EF) 1 beta gamma delta complex. Essential roles of the NH2-terminal extension of valyl-tRNA synthetase and of the EF-1 delta subunit in complex formation. J Biol Chem. 1994;269(3):2086-92.
[26] Quevillon S, Mirande M. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett. 1996;395(1):63-7.
[27] Varricchio F, Uziel M. Comparison of supernatant-and ribosome-bound rat liver tRNA. Biochem Int. 1992;28(6):1039-44.
[28] Mukhopadhyay S, Shankar S, Walden W, Chakrabarty AM. Complex formation of the elongation factor Tu from Pseudomonas aeruginosa with nucleoside diphosphate kinase modulates ribosomal GTP synthesis and peptide chain elongation. J Biol Chem. 1997;272(28):17815-20.
[29] Sonnemann J, Mutzel R. Cytosolic nucleoside diphosphate kinase associated with the translation apparatus may provide GTP for protein synthesis. Biochem Biophys Res Commun. 1995;209(2):490-6.
[30] Hod Y, Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem. 1976;251(14):4458-7.
[31] Gehrke L, Ilan J. Preferential utilization of exogenously supplied leucine for protein synthesis in estradiol-induced and uninduced cockerel liver explants. Proc Natl Acad Sci U S A. 1983;80(11):3274-8.
[32] Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[33] Murray JW, Edmonds BT, Liu G, Condeelis J. Bundling of actin filaments by elongation factor 1 alpha inhibits polymerization at filament ends. J Cell Biol. 1996;135(5):1309-21.
[34] Liu G, Tang J, Edmonds BT, Murray J, Levin S, Condeelis J. F-actin sequesters elongation factor 1alpha from interaction with aminoacyl-tRNA in a pH-dependent reaction. J Cell Biol. 1996;135(4):953-63.
[35] Edmonds BT, Wyckoff J, Yeung YG, Wang Y, Stanley ER, Jones J, Segall J, Condeelis J. Elongation factor-1 alpha is an overexpressed actin binding protein in metastatic rat mammary adenocarcinoma. J Cell Sci. 1996;109 ( Pt 11):2705-14.
[36] Stapulionis R, Kolli S, Deutscher MP. Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem. 1997;272(40):24980-6.
[37] Barbarese E, Koppel DE, Deutscher MP, Smith CL, Ainger K, Morgan F, Carson JH. Protein translation components are colocalized in granules in oligodendrocytes. J Cell Sci. 1995;108 ( Pt 8):2781-90.
[38] Ainger K, Avossa D, Diana AS, Barry C, Barbarese E, Carson JH. Transport and localization elements in myelin basic protein mRNA. J Cell Biol. 1997;138(5):1077-87.
[39] Tiedge H, Brosius J. Translational machinery in dendrites of hippocampal neurons in culture. J Neurosci. 1996;16(22):7171-81.
[40] Negrutskii BS. The effect of phosphocreatine on the distribution of different subunits of translation elongation factor 1 in gently permeabilized human fibroblasts. Biopolym Cell. 1997; 13(5):380-5.