Biopolym. Cell. 1998; 14(2):93-98.
Огляди
Закономірності та механізми комбінованої дії гіпертермії і радіації на клітини пухлин
1Зінченко В. А.
  1. Український науково-дослідний інститут онкології та радіології МОЗ України
    ул. Ломоносова, 33/43, Киев, Украина, 03022

Abstract

В огляді наведено дані літератури, пов'язані з особливостями механізмів комбінованої гіпертермічної (ГТ) і променевої дії на клітини пухлин. Показано, що через різну природу поглинання енергії у клітинах після впливу іонізуючої радіації та ГТ уражаються різні молекулярні мішені: ДНК і білок відповідно, а також має місце переважаюча дія на різні фази клітинного циклу, що відіграє певну роль при сумісному застосуванні цих фізичних факторів. Розглядаються також закономірності фізіологічної реакції клітин, які обмежують деструктивну ГТ дію на клітини пухлин. Це індукція білків теплового шоку та виникнення термотолерантності. Встановлено, що інформація про термобіологічні основи дії ГТ при вивченні структурно-функціональних змін у клітинах пухлини дозволяє підвищити ступінь їхньої девіталізації.

References

[1] Zhavrid EA, Osinskiy SP, Fradkin SZ. Hyperthermia and hyperglycemia in oncology. Kiev, Naukova Dumka. 1987. 256 p.
[2] Overgaard F. The rationale for clinical trials in hyperthermia. An Introduction to the practical aspects of clinical hyperthermia. Eds S. B. Field, F. W. Hand. London, New York, 1990: 213-241.
[3] Meyer JL, Kapp DS, Fessenden P, Hahn GH. Hyperthermic oncology: current biology, physics and clinical results. Pharmacol Ther. 1989;42(2):251-88.
[4] Engin K. Biological rationale for hyperthermia in cancer treatment (II). Neoplasma. 1994;41(5):277-83.
[5] Molls M. Hyperthermia--the actual role in radiation oncology and future prospects. Part I. Strahlenther Onkol. 1992;168(4):183-90.
[6] Bazzocchi G, Spadoni F, Zambelli M, Camporesi A, Bazzocchi S, Saragoni A. Centred radio-frequency hyperthermia in solid tumours. Adv Exp Med Biol. 1990;267:405-10.
[7] Yatsenko VP, Afonina GB, Balyi AV, Rusin EV, Bryuzgina TS, Bazyka DA. Free radical mechenisms of the radiodamage of cell membranes. Dopovidi Nats Akad Nauk Ukrainy. 1997; (10):174-8.
[8] Baraboi VA, Zinchenko VA, Gavrylenko MF et al. Thermoradiotherapy in oncology. Ukr Radiol Zh. 1995; 3(4): 372-80.
[9] Konings AW. Radiosensitization by hyperthermia; mechanisms of interaction. Radiat Res. 1895-1995: Congr. Proc. Wurzburg, 1995: 38.
[10] Dewey WC, Freeman ML, Rapphorst GP et. al. Cell biology of hyperthermia and radiation. Radiation biology in cancer research. Eds R. Meyn, R. Withers. New York: Raven press, 1980: 589-621.
[11] Dewey WC. Cell killing chromosomal aberrations and division delay as thermal sensitivity is modified during the cell cycle and evidence for heat denaturalization. aggregation of protein. Hyperthermia in oncology: II All-Union. Symposium. with int. particip in: Proc. rep. Obninsk. 1990. Vol. 2: 88.
[12] George H. Effects of hyperthermia on intracellular sodium levels and membrane potential. Radiat. Res. 1895-1995: Congr. Proc-Wurzburg, 1995: 89.
[13] Field SB. In vivo aspects of hyperthermic oncology. An Introduction to the Practical Aspects of Clinical Hyperthermia. Eds S. B. Field, J. W. Hand. London-New York, 1990: 55-68.
[14] Raaphorst G. P. Fundamental aspects of hyperthermic biology. Eds S. B. Field, J. W. Hand. London-New York, 1990;10.
[15] Konopliannikov AG. [Current problems of thermobiology]. Med Radiol (Mosk). 1987;32(1):53-6.
[16] Nover L, Helmund D, Neumann D et al. The heat shock response of eukaryotic cells. Biol Zentralblatt. 1984; 103(4): 357-435.
[17] Matyushina MV, Kurchenko VP, Pikulev AT. Effect of hyperthermia on the state of cytoskeletal proteins and microtubule assembly. Hyperthermia in oncology: II All-Union. Symposium. with int. particip in: Proc. rep. Obninsk. 1990; vol 2: 19-20.
[18] Calderwood SK. Role of energy in cellular responses to heat. Symp Soc Exp Biol. 1987;41:213-33.
[19] Kurpeshev OK. Local hyperthermia in combination with radiation therapy of cancer patients. Med Radiol (Mosk). 1992; 2: 55-61.
[20] Kokura S., Yoshlkawa T. Role of active oxigen species and lipid peroxidation for antitumor effect of hyperthermia. Hyperthermic oncology: Proc. 6th Int. Congr. on Hyperthermic Oncol. (Tucson, 27 apr. 1 may 1992). Summary Papers. Tucson, 1992. Vol. 1: 76.
[21] Streffer C, van Beuningen D. The biological basis for tumour therapy by hyperthermia and radiation. Recent Results Cancer Res. 1987;104:24-70.
[22] Kolesnikova AI, Kal'sina SSh, Lepekhina LA, Shte?n LV, Grigor'ev AN. [Thermosensitivity of clonogenic cells and the induction of thermal tolerance]. Med Radiol (Mosk). 1987;32(1):67-9.
[23] Marguer CM, Sneed PK, Li CC et al. HSP 70 synthesis in clinical hyperthermia patients. Thirty Eighth Ann. Meet. Radiat. Res. Soc. and Tenth Annu. Meet. North Amer. Hypertherm. Group. New Orleans, La., 1990: 10.
[24] Lepock JR. Mechanisms of thermal damage. Proc. Tenth Int. Congr. Radiat. Res. Wurzburg, 1995; Vol. 1: 11
[25] Halin GM, Li GC. Thermotolerance, thermoresistance and thermosensitization. Stress Proteins Biol, and Med. New York: Cold Spring Harbor Lab., 1990: 79-110.
[26] Li GC, Yang S. Involvement of constitutive heat shok element-binding factor. Proc. Tenth Int. Congr. Radiat. Res-Wurzburg, 1995. Vol. 1: 90.
[27] Leeper D., Rifat S., Wahi M.t Owen C. Heat shock protein synthesis in mammalian cells adapted to growth of low pHe. Proc. Tenth Int. Congr. Radiat. Res—Wurzburg, 1995; Vol. 1:89.
[28] Subjeck J., Repasky E. Lymphocyte activation and a cellular redistribution of spectrin, protein kinase C and heat shock protein 70 is induced by fever level hyperthermia. Proc. Tenth Int. Congr. Radiat. Res—Wurzburg, 1995; Vol. 1: 89.
[29] Alekseeva LV, Guzhova IM, Margulis BA, Pereverzev AE. Heat shock proteins in bone marrow cells of mice exposed to radiation and radiation-thermal effects. I All-Union. radiobiol. Congress: Abstracts. rep. Pushchino. 1989.; vol 1:129-30.
[30] Baraboi VA, Gress VE. Stress proteins: the nature and biological role in mammals. Aktual probl meditsiny i biologii. Kiev. 1989; 2.:420-32.
[31] Braun AD, Mozhenok TM. Nonspecific adaptation syndrome cell system. L.: Nauka. 1987. 232 p.
[32] Hynynen K, Lulu BA. Hyperthermia in cancer treatment. Invest Radiol. 1990;25(7):824-34.
[33] Lobko GN, Porubova GM. Tumors resistance : genetic aspects. Minsk: Nauka i Tekhnika, 1989. 143 p.
[34] Weshler Z, Kapp DS, Lord PF, Hayes T. Development and decay of systemic thermotolerance in rats. Isr J Med Sci. 1989;25(1):15-9.
[35] Dewey WC, Holehan PK. Thermotolerance as a modified radiation toxicity. Ed. K. J. Henle. Boca Raton: CRS press, 1987. Vol. 1: 113-125.
[36] Pyatenko VS. The study radiosensitizing effect of hyperthermia and the effect of induced thermotolerance. Radiomodifiers in radiation therapy of tumors: Proc. rep. All-Union. Conf. Obninsk, 1982:64-66.
[37] van Bergen en Henegouwen PM, Linnemans AM. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells. Exp Cell Res. 1987;171(2):367-75.
[38] Carper SW, Duffy JJ, Gerner EW. Heat shock proteins in thermotolerance and other cellular processes. Cancer Res. 1987;47(20):5249-55.
[39] Perlaky L, F?nagy A, Unger E, Hidv?gi EJ. Effect of hyperthermia and X-irradiation on survival and occurrence of metastases in mice bearing P388 tumor. Int J Hyperthermia. 1989;5(5):603-15.
[40] Mukvitch AN. The kinetics of protein synthesis, thermotolerance and thermal shock in experimental tumors in vitro after hyperthermia. Thesis kand biol nauk. Kiev, 1992; 111 p.
[41] Osipova LA, Mukevich AN, Nemliy NI, Osinskiy SP. Effects of hyperthermia on the mitogenic effects of epidermal growth factor and the synthesis of heat shock proteins in cultured hepatocytes. Hyperthermia in oncology. II All-Union. Symposium. with int. particip: Proc. rep. Obninsk, 1990; Vol 2; 34-5.
[42] Mikvich AN, Osipova LA, Osinsky SP. Antituour effect and thermotolerance induced in rats with Guerin carcinoma by hyperthermia performad at different time of a day. Eksp Oncol. 1992; 14(1):65-8.
[43] Mikvich AN, Osipova LA, Osinsky SP. Synthesis od heat shock proteins in rat tumours after hyperthermia performed in vivo at different timee of a day. Eksp Oncol. 1992; 2:71-3.
[44] Mackey MA, Dewey WC. Time-temperature analyses of cell killing of synchronous G1 and S phase Chinese hamster cells in vitro. Radiat Res. 1988;113(2):318-33.
[45] Reinhold HS, Van den Berg AP. Effects of hyperthermia on blood flow and metabolism. An introduction to practical of clinical hyperthermy. Eds S. B. Field, J. W. Hand. London, New York; Philadelphia: Taylor and Francis, 1990: 77-107.
[46] Jung H, Dicomey E. Mechanisms of thermal radiosensitization: role of heat shock proteins in heat induced alterations of protein conformation. Hyperthermic oncology: Proc. 6th Int. Congr. on Hyperthermic Oncol. (Tucson, 27 apr. 1 may 1992). Summary Papers. Tucson, 1992. Vol. 1: 82.
[47] Zinchenko VA. Using cyto kinetic parameters of tumor cells to correct the combined treatment regimens. VIII Congress oncologists UkrSSR (Donetsk, 1990). Kiev, 1990; 530-1.
[48] Zinchenko VA. Effective radiation therapy by theoretically and experimentally using sound modifying effects of physical factors. Justification complex methods of treatment of malignant tumors main locations: Materials scientific and practical. Conf. oncologists of Ukraine. Kiev; Kerch, 1993;83-4.
[49] Baraboi VA, Zinchenko VA. Pathomorphosis melanoma experimental mice based on the temperature and the interval between the radiation and hyperthermia. Hyperthermia in oncology. II All-Union. Symposium. with int. particip: Proc. rep. Obninsk, 1990; Vol. 2:3-4.
[50] Baraboy V. A, Zincenko KA, Bobro LI. Optimization of thermoradiotherapy (TRT) regimens using hyperthermia (HT) as a radiosensitizer and a factor for ovecooming tumor radio-resistance. Proc. Tenth Int. Congr. Radiat. Res. Wurzburg, 1995. Vol. 1: 401.
[51] Baraboi VA, Bobro LI, Zinchenko VA. Pathomorphosis and proliferative activity of rat rhabdomyosarcoma induced by dimethyl benzanthracene, with heat and radiation exposure. Clinical Oncology (Repub. Interdepartmental. Coll.). Kyiv: Zdorov'ya, 1992; Iss 12;62-7.
[52] Ganul VL, Barabo? VA, Zinchenko VA, Segeda TP. [The cytokinetic characteristics of DMBA-induced tumors in rats under different variants of thermoradiotherapy]. Vopr Onkol. 1992;38(11):1376-9. Russian.
[53] Baraboy VA, Zinchenko VA, Bobro L, Bloom MA. Tumor heating before radiation is more preferable under nonhomogenous temperature distribution in tumor tissue. The 18th Int. Symp. Clin. Hypertherm. (18th ISCH): Abstr. book. Kiev, 1995: 22.
[54] Baraboy VA, Zinchenko VA. Radiomodifying moderate hyperthermia effect in experiment and clinic. Cytokinetic effects. IV Congr World Federation of Ukrainian. physician partnerships(9-14 Aug 1992): . Kharkiv, 1992;321-2.
[55] Baraboy VA, Zinchenko VA, Kovalenko LS, Segeda TP. The effect of various schemes of thermoradiotherapy of kinetic parameters of Rhabdomyosarcoma and sarcoma 45 cells in rats and in Hep-2 cell culture. Eksp Oncol. 1993; 15(4):70-4.
[56] Baraboy V., Zinchenko V. Experimental and clinical study of radiomodifying action of moderate hyperthermia, its cytogenic effect. Abstract book IVth Congr. World Fed. Ukr. Med. Assoc.(August 9-14, 1992). Kharkiv, 1992: 530.
[57] Ganool VL, Baraboy VA, Zinchenko VA et al. Thermo-radiation therapy (TRT) of malignancied: some pro-spectives of its improvement. Proc. 14th Int. Symp. Clin. Hypertherm. Dubna, 1991: 19.