Biopolym. Cell. 1997; 13(6):436-441.
Огляди
Цитоскелет і фактори елонгації трансляції
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Розглянуто можливу участь еукаріотичних факторів елонгації
в організації і регуляції мікротрубочкової та мікрофіламентної систем цитоскелета клітини, а також потенційна роль
цих білків у забезпеченні координації білкового синтезу і
динаміки цитоскелета за різних станів клітини.
Повний текст: (PDF, російською)
References
[1]
Ohta K, Toriyama M, Miyazaki M, Murofushi H, Hosoda S, Endo S, Sakai H. The mitotic apparatus-associated 51-kDa protein from sea urchin eggs is a GTP-binding protein and is immunologically related to yeast polypeptide elongation factor 1 alpha. J Biol Chem. 1990;265(6):3240-7.
[2]
Bell? R, Derancourt J, Poulhe R, Capony JP, Ozon R, Mulner-Lorillon O. A purified complex from Xenopus oocytes contains a p47 protein, an in vivo substrate of MPF, and a p30 protein respectively homologous to elongation factors EF-1 gamma and EF-1 beta. FEBS Lett. 1989;255(1):101-4.
[3]
Janssen GM, Morales J, Schipper A, Labb? JC, Mulner-Lorillon O, Bell? R, M?ller W. A major substrate of maturation promoting factor identified as elongation factor 1 beta gamma delta in Xenopus laevis. J Biol Chem. 1991;266(23):14885-8.
[4]
Marchesi VT, Ngo N. In vitro assembly of multiprotein complexes containing alpha, beta, and gamma tubulin, heat shock protein HSP70, and elongation factor 1 alpha. Proc Natl Acad Sci U S A. 1993;90(7):3028-32.
[5]
Mulner-Lorillon O, Cormier P, Cavadore JC, Morales J, Poulhe R, Bell? R. Phosphorylation of Xenopus elongation factor-1 gamma by cdc2 protein kinase: identification of the phosphorylation site. Exp Cell Res. 1992;202(2):549-51.
[6]
Sanders J, Maassen JA, M?ller W. Elongation factor-1 messenger-RNA levels in cultured cells are high compared to tissue and are not drastically affected further by oncogenic transformation. Nucleic Acids Res. 1992;20(22):5907-10.
[7]
Krieg PA, Varnum SM, Wormington WM, Melton DA. The mRNA encoding elongation factor 1-alpha (EF-1 alpha) is a major transcript at the midblastula transition in Xenopus. Dev Biol. 1989;133(1):93-100.
[8]
Grant AG, Flomen RM, Tizard ML, Grant DA. Differential screening of a human pancreatic adenocarcinoma lambda gt11 expression library has identified increased transcription of elongation factor EF-1 alpha in tumour cells. Int J Cancer. 1992;50(5):740-5.
[9]
Cavallius J, Rattan SI, Clark BF. Changes in activity and amount of active elongation factor 1 alpha in aging and immortal human fibroblast cultures. Exp Gerontol. 1986;21(3):149-57.
[10]
Shepherd JC, Walldorf U, Hug P, Gehring WJ. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer. Proc Natl Acad Sci U S A. 1989;86(19):7520-1.
[11]
Viel A, Dj? MK, Mazabraud A, Denis H, le Maire M. Thesaurin a, the major protein of Xenopus laevis previtellogenic oocytes, present in the 42 S particles, is homologous to elongation factor EF-1 alpha. FEBS Lett. 1987;223(2):232-6.
[12]
Mattaj IW, Coppard NJ, Brown RS, Clark BF, De Robertis EM. 42S p48--the most abundant protein in previtellogenic Xenopus oocytes--resembles elongation factor 1 alpha structurally and functionally. EMBO J. 1987;6(8):2409-13.
[13]
Coppard NJ, Poulsen K, Madsen HO, Frydenberg J, Clark BF. 42Sp48 in previtellogenic Xenopus oocytes is structurally homologous to EF-1 alpha and may be a stage-specific elongation factor. J Cell Biol. 1991;112(2):237-43.
[14]
Deschamps S, Morales J, Mazabraud A, le Maire M, Denis H, Brown DD. Two forms of elongation factor 1 alpha (EF-1 alpha O and 42Sp50), present in oocytes, but absent in somatic cells of Xenopus laevis. J Cell Biol. 1991;114(6):1109-11.
[15]
Johnson AD, Krieg PA. A Xenopus laevis gene encoding EF-1 alpha S, the somatic form of elongation factor 1 alpha: sequence, structure, and identification of regulatory elements required for embryonic transcription. Dev Genet. 1995;17(3):280-90.
[16]
Tatsuka M, Mitsui H, Wada M, Nagata A, Nojima H, Okayama H. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature. 1992;359(6393):333-6.
[17]
Lew Y, Jones DV, Mars WM, Evans D, Byrd D, Frazier ML. Expression of elongation factor-1 gamma-related sequence in human pancreatic cancer. Pancreas. 1992;7(2):144-52.
[18]
Mimori K, Mori M, Tanaka S, Akiyoshi T, Sugimachi K. The overexpression of elongation factor 1 gamma mRNA in gastric carcinoma. Cancer. 1995;75(6 Suppl):1446-9.
[19]
Mimori K, Mori M, Inoue H, Ueo H, Mafune K, Akiyoshi T, Sugimachi K. Elongation factor 1 gamma mRNA expression in oesophageal carcinoma. Gut. 1996;38(1):66-70.
[20]
Condeelis J. Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci. 1995;20(5):169-70.
[21]
Nyg?rd O, Nilsson L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. Eur J Biochem. 1990;191(1):1-17.
[22]
Merrick WC. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992;56(2):291-315.
[23]
Triana FJ, Nierhaus KH, Ziehler J. Chakraburtty K. Defining the functions of EF-3, a unique elongation factor in low fungi. The translation apparatus. Eds K. Nierhaus et al. New York: Plenum press, 1993: 327-38.
[24]
Shiina N, Gotoh Y, Nishida E. Microtubule-severing activity in M phase. Trends Cell Biol. 1995;5(7):283-6.
[25]
Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E. Microtubule severing by elongation factor 1 alpha. Science. 1994;266(5183):282-5.
[26]
Durso NA, Cyr RJ. A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1 alpha. Plant Cell. 1994;6(6):893-905.
[27]
Janssen GM, M?ller W. Elongation factor 1 beta gamma from Artemia. Purification and properties of its subunits. Eur J Biochem. 1988;171(1-2):119-29.
[28]
Demma M, Warren V, Hock R, Dharmawardhane S, Condeelis J. Isolation of an abundant 50,000-dalton actin filament bundling protein from Dictyostelium amoebae. J Biol Chem. 1990;265(4):2286-91.
[29]
Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[30]
Itano N, Hatano S. F-actin bundling protein from Physarum polycephalum: purification and its capacity for co-bundling of actin filaments and microtubules. Cell Motil Cytoskeleton. 1991;19(4):244-54.
[31]
Numata O. Multifunctional proteins in Tetrahymena: 14-nm filament protein/citrate synthase and translation elongation factor-1 alpha. Int Rev Cytol. 1996;164:1-35.
[32]
Takeda T, Kurasawa Y, Watanabe Y, Numata O. Polymerization of highly purified Tetrahymena 14-nm filament protein/citrate synthase into filaments and its possible role in regulation of enzymatic activity. J Biochem. 1995;117(4):869-74.
[33]
Kurasawa Y, Hanyu K, Watanabe Y, Numata O. F-actin bundling activity of Tetrahymena elongation factor 1 alpha is regulated by Ca2+/calmodulin. J Biochem. 1996;119(4):791-8.
[34]
Kaur KJ, Ruben L. Protein translation elongation factor-1 alpha from Trypanosoma brucei binds calmodulin. J Biol Chem. 1994;269(37):23045-50.
[35]
Hasegawa T, Takahashi S, Hayashi H, Hatano S. Fragmin: a calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry. 1980;19(12):2677-83.
[36]
missed
[37]
missed
[38]
Giffard RG, Weeds AG, Spudich JA. Ca2+-dependent binding of severin to actin: a one-to-one complex is formed. J Cell Biol. 1984;98(5):1796-803.
[39]
Yin HL, Stossel TP. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979;281(5732):583-6.
[40]
Bretscher A, Weber K. Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell. 1980;20(3):839-47.
[41]
Burridge K, Feramisco JR. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981;294(5841):565-7.
[42]
Edmonds BT, Murray J, Condeelis J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1 alpha. J Biol Chem. 1995;270(25):15222-30.
[43]
Bassell GJ, Powers CM, Taneja KL, Singer RH. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J Cell Biol. 1994;126(4):863-76.
[44]
Dharmawardhane S, Demma M, Yang F, Condeelis J. Compartmentalization and actin binding properties of ABP-50: the elongation factor-1 alpha of Dictyostelium. Cell Motil Cytoskeleton. 1991;20(4):279-88.
[45]
Shestakova EA, Motuz LP, Minin AA, Gelfand VI, Gavrilova LP. Some of eukaryotic elongation factor 2 is colocalized with actin microfilament bundles in mouse embryo fibroblasts. Cell Biol Int Rep. 1991;15(1):75-84.
[46]
Shestakova EA, Motuz LP, Minin AA, Gavrilova LP. Study of localization of the protein-synthesizing machinery along actin filament bundles. Cell Biol Int. 1993;17(4):409-16.
[47]
Shestakova EA, Motuz LP, Gavrilova LP. Co-localization of components of the protein-synthesizing machinery with the cytoskeleton in G0-arrested cells. Cell Biol Int. 1993;17(4):417-24.
[48]
Bekta? M, Nurten R, G?rel Z, Sayers Z, Bermek E. Interactions of eukaryotic elongation factor 2 with actin: a possible link between protein synthetic machinery and cytoskeleton. FEBS Lett. 1994;356(1):89-93.
[49]
Yang W, Burkhart W, Cavallius J, Merrick WC, Boss WF. Purification and characterization of a phosphatidylinositol 4-kinase activator in carrot cells. J Biol Chem. 1993;268(1):392-8.
[50]
Venema RC, Peters HI, Traugh JA. Phosphorylation of valyl-tRNA synthetase and elongation factor 1 in response to phorbol esters is associated with stimulation of both activities. J Biol Chem. 1991;266(18):11993-8.
[51]
Venema RC, Peters HI, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) and valyl-tRNA synthetase by protein kinase C and stimulation of EF-1 activity. J Biol Chem. 1991;266(19):12574-80.
[52]
Kielbassa K, M?ller HJ, Meyer HE, Marks F, Gschwendt M. Protein kinase C delta-specific phosphorylation of the elongation factor eEF-alpha and an eEF-1 alpha peptide at threonine 431. J Biol Chem. 1995;270(11):6156-62.
[53]
Janssen GM, Maessen GD, Amons R, M?ller W. Phosphorylation of elongation factor 1 beta by an endogenous kinase affects its catalytic nucleotide exchange activity. J Biol Chem. 1988;263(23):11063-6.
[54]
Chen CJ, Traugh JA. Expression of recombinant elongation factor 1 beta from rabbit in Escherichia coli. Phosphorylation by casein kinase II. Biochim Biophys Acta. 1995;1264(3):303-11.
[55]
Palen E, Venema RC, Chang YW, Traugh JA. GDP as a regulator of phosphorylation of elongation factor 1 by casein kinase II. Biochemistry. 1994;33(28):8515-20.
[56]
Peters HI, Chang YW, Traugh JA. Phosphorylation of elongation factor 1 (EF-1) by protein kinase C stimulates GDP/GTP-exchange activity. Eur J Biochem. 1995;234(2):550-6.
[57]
van Hemert FJ, Amons R, Pluijms WJ, van Ormondt H, M?ller W. The primary structure of elongation factor EF-1 alpha from the brine shrimp Artemia. EMBO J. 1984;3(5):1109-13.
[58]
Coppard NJ, Clark BF, Cramer F. Methylation of elongation factor 1 alpha in mouse 3T3B and 3T3B/SV40 cells. FEBS Lett. 1983;164(2):330-4.
[59]
Dever TE, Costello CE, Owens CL, Rosenberry TL, Merrick WC. Location of seven post-translational modifications in rabbit elongation factor 1 alpha including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine. J Biol Chem. 1989;264(34):20518-25.
[60]
Riis B, Rattan SI, Clark BF, Merrick WC. Eukaryotic protein elongation factors. Trends Biochem Sci. 1990;15(11):420-4.
[61]
Ryazanov AG, Shestakova EA, Natapov PG. Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature. 1988;334(6178):170-3.
[62]
van Damme HT, Amons R, M?ller W. Identification of the sites in the eukaryotic elongation factor 1 alpha involved in the binding of elongation factor 1 beta and aminoacyl-tRNA. Eur J Biochem. 1992;207(3):1025-34.
[63]
Van Duijn B, Inouye K. Regulation of movement speed by intracellular pH during Dictyostelium discoideum chemotaxis. Proc Natl Acad Sci U S A. 1991;88(11):4951-5.
[64]
Agutter PS. Role of the cytoskeleton in nucleocytoplasmic RNA and protein distributions. Biochem Soc Trans. 1991;19(4):1094-8.
[66]
Biegel D, Pachter JS. mRNA association with the cytoskeletal framework likely represents a physiological binding event. J Cell Biochem. 1992;48(1):98-106.
[67]
Hesketh JE, Horne Z, Campbell GP. Immunohistochemical evidence for an association of ribosomes with microfilaments in 3T3 fibroblasts. Cell Biol Int Rep. 1991;15(2):141-50.
[68]
Hesketh JE, Pryme IF. Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J. 1991;277 ( Pt 1):1-10.
[69]
Litman P, Barg J, Ginzburg I. Microtubules are involved in the localization of tau mRNA in primary neuronal cell cultures. Neuron. 1994;13(6):1463-74.
[70]
Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[71]
Negrutskii BS, Deutscher MP. Channeling of aminoacyl-tRNA for protein synthesis in vivo. Proc Natl Acad Sci U S A. 1991;88(11):4991-5.
[72]
Negrutskii BS, Deutscher MP. A sequestered pool of aminoacyl-tRNA in mammalian cells. Proc Natl Acad Sci U S A. 1992;89(8):3601-4.
[73]
Negrutskii BS, Stapulionis R, Deutscher MP. Supramolecular organization of the mammalian translation system. Proc Natl Acad Sci U S A. 1994;91(3):964-8.
[74]
Stapulionis R, Deutscher MP. A channeled tRNA cycle during mammalian protein synthesis. Proc Natl Acad Sci U S A. 1995;92(16):7158-61.
[75]
Grinstein S, Rotin D, Mason MJ. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989;988(1):73-97.