Biopolym. Cell. 1996; 12(4):5-24.
Біохімічні механізми регуляції скорочення гладеньких м'язів
- НДІ фізіології ім. академіка Петра Богача
Київського національного університету імені Тараса Шевченка
Проспект Академіка Глушкова, 2, Київ, Україна, 03187
Abstract
В огляді проаналізовано останні досягнення в області біохімії і молекулярної фізіології регуляції скорочувальних процесів в гладеньких м'язах. Скорочення гладенького м'яза потребує фосфорилювання міозину. Цей процес пов'язаний з
внутрішньоклітинним викидом Са2+ і наступним утворенням Са2+ - кальмодулінового комплексу та активацією кінази легких ланцюгів міозину. Розслаблення забезпечується дефосфорилюванням міозину за допомогою фосфатази легких
ланцюгів міозину. Існує припущення, що дефосфорилювання не регулюється. Інші
можливі механізми регуляції включають зв'язані з тонкими філаментами білки,
такі як кальдесмон і кальпонін.
Повний текст: (PDF, українською)
References
[1]
Hartshome DJ. Biochemistry of the contractile process in smooth muscle. Physiology of the gastrointestinal tract. Ed. L. R. Johnson. New York: Raven press. 1987: 423-82.
[2]
Somlyo AP, Somlyo AV. Smooth muscle structure and function. The heart and cardiovascular system. Eds H. A. Fozzard et al. New York: Raven press. 1986; 845-61.
[3]
Adelstein RS, Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921-56.
[4]
Hartshorne DJ. Phosphorylation of myosin and the regulation of smooth muscle actomyosin. Cell and muscle motility. Ed. R. M. Dowben. New York, 1982. Vol. 2: 185-220.
[5]
Kamm KE, Stull JT. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593-620.
[6]
Groschel-Stewart U, Drenckhahn D. Muscular and cytoplasmic contractile proteins. Collagen Rel. Res. 1982. 2: 381-463.
[7]
Danilova VM. Methods of preparation and characteristics of smooth muscle myosin. Biophysical and biochemical methods of investigation of muscle proteins. L .: Science, 1978: 76-90.
[9]
Danilova VM, Tregubov VS. A comparative study of structural and functional properties of myosin of skeletal and smooth muscle in mammals. Mol Gen Biophys. 1988;(13):88-95.
[10]
Margossian SS, Lowey S. Interaction of myosin subfragments with F-actin. Biochemistry. 1978;17(25):5431-9.
[11]
Hartshorne D, Kawamura T. Regulation of contraction-relaxation in smooth muscle. New Phisiol Sci. 1992. 7: 59-64.
[12]
Maita T, Chen JI, Matsuda G. Amino-acid sequence of the 20 000-molecular-weight light chain of chicken gizzard-muscle myosin. Eur J Biochem. 1981;117(2):417-24.
[13]
Matsuda G, Maita T, Kato Y, Chen JI, Umegane T. Amino acid sequences of the cardiac L-2A, L-2B and gizzard 17 000-Mr light chains of chicken muscle myosin. FEBS Lett. 1981;135(2):232-6.
[14]
Kendrick-Jones J, Scholey JM. Myosin-linked regulatory systems. J Muscle Res Cell Motil. 1981;2(4):347–72.
[15]
Driska S, Hartshorne DJ. The contractile proteins of smooth muscle. Properties and components of a Ca2+-sensitive actomyosin from chicken gizzard. Arch Biochem Biophys. 1975;167(1):203-12.
[16]
Mrwa U, Achtig I, Ruegg JC. Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels. 1974;11(5-6):277-86.
[17]
B?r?ny M, B?r?ny K, Gaetjens E, Bailin G. Chicken gizzard myosin. Arch Biochem Biophys. 1966;113(1):205-22.
[18]
Yamaguchi M, Miyazawa Y, Sekine T. Preparation and properties of smooth muscle myosin from horse esophagus. Biochim Biophys Acta. 1970;216(2):411-21.
[19]
Chacko S, Conti MA, Adelstein RS. Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci U S A. 1977;74(1):129-33.
[20]
Chacko S. Effects of phosphorylation, calcium ion, and tropomyosin on actin-activated adenosine 5'-triphosphatase activity of mammalian smooth muscle myosin. Biochemistry. 1981;20(4):702-7.
[21]
Sobieszek A, Small JV. Regulation of the actin-myosin interaction in vertebrate smooth muscle: activation via a myosin light-chain kinase and the effect of tropomyosin. J Mol Biol. 1977;112(4):559-76.
[22]
Hartshorne DJ, Gorecka A. Biochemistry of the contractile proteins of smooth muscle. Handbook of physiology. The cardiovascular system. Eds D. F. Bohr, A. P. Somlyo, H. V. Sparks. Bethesda: Amer. physiol. Soc, 1980. Vol. 2: 93-120.
[23]
Elzinga M, Collins JH, Kuehl WM, Adelstein RS. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1973;70(9):2687-91.
[24]
Vandekerckhove J, Weber K. Actin amino-acid sequences. Comparison of actins from calf thymus, bovine brain, and SV40-transformed mouse 3T3 cells with rabbit skeletal muscle actin. Eur J Biochem. 1978;90(3):451-62.
[25]
Rubenstein PA, Spudich JA. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977;74(1):120-3.
[26]
Whalen RG, Butler-Browne GS, Gros F. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc Natl Acad Sci U S A. 1976;73(6):2018-22.
[27]
Vandekerckhove J, Weber K. Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J Mol Biol. 1984;179(3):391-413.
[28]
Hanson J, Lowy J. The structure of F-actin and of actin filaments isolated from muscle. J Mol Biol. 1963;6(1):46–60.
[29]
Korn ED. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982;62(2):672-737.
[30]
Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982;296(5860):811-6.
[31]
Sobieszek A, Small JV. Myosin-linked calcium regulation in vertebrate smooth muscle. J Mol Biol. 1976;102(1):75-92.
[32]
Murray JM, Weber A. The cooperative action of muscle proteins. Sci Am. 1974;230(2):58-71.
[33]
Dabrowska R, Nowak E, Drabikowski W. Comparative studies of chicken gizzard and rabbit skeletal tropomyosin. Comp Biochem Physiol B. 1980;65(1):75–83.
[34]
Sanders C, Smillie LB. Chicken gizzard tropomyosin: head-to-tail assembly and interaction with F-actin and troponin. Can J Biochem Cell Biol. 1984;62(6):443-8.
[35]
Sanders C, Smillie LB. Amino acid sequence of chicken gizzard beta-tropomyosin. Comparison of the chicken gizzard, rabbit skeletal, and equine platelet tropomyosins. J Biol Chem. 1985;260(12):7264-75.
[36]
Ebashi S, Nononura Y, Toyo-oka T, Katayama E. Regulation of smooth muscle contraction by the calcium-troponin-tropomyosin system. Calcium in biological systems. Ed. C. J. Duncan. London: Cambridge Univ. press, 1976: 349-60.
[37]
Marston SB, Smith CW. Purification and properties of Ca2+-regulated thin filaments and F-actin from sheep aorta smooth muscle. J Muscle Res Cell Motil. 1984;5(5):559-75.
[38]
Walsh MP. Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem. 1994;135(1):21-41.
[39]
Sobue K, Muramoto Y, Fujita M, Kakiuchi S. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci U S A. 1981;78(9):5652-5.
[40]
Horiuchi KY, Chacko S. Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry. 1988;27(22):8388-93.
[41]
Ikebe M, Reardon S. Binding of caldesmon to smooth muscle myosin. J Biol Chem. 1988;263(7):3055-8.
[43]
Dabrowska R, Goch A, Ga?azkiewicz B, Osi?ska H. The influence of caldesmon on ATPase activity of the skeletal muscle actomyosin and bundling of actin filaments. Biochim Biophys Acta. 1985;842(1):70-5.
[44]
Ngai PK, Walsh MP. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem. 1984;259(22):13656-9.
[45]
Danilova VM, Kulikova NV, Tregubov VS, Omelyanuk VS, Filenko AM. Caldesmon is a Ca2+-regulatory protein component of native aorta smooth muscle filaments. Biopolym Cell. 1995; 11(5):28-36.
[46]
Sobue K, Morimoto M, Inui M. et al Control of actin-myosin interaction of gizzard smooth muscle by calmodulin- and caldesmon-linked flip-flop mechanism. Biomed. Res. 1982. 3: 188-196.
[47]
Takahashi K, Hiwada K, Kokubu T. Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun. 1986;141(1):20-6.
[48]
Stafford WF, Mabuchi JC, Takahashi K, Too T. Physical properties of calponin. Biophys J. 1993; 64:A31.
[49]
Miki M, Walsh MP, Hartshorne DJ. The mechanism of inhibition of the actin-activated myosin MgATPase by calponin. Biochem Biophys Res Commun. 1992;187(2):867-71.
[50]
Ebashi S, Kodatna A, Ebashi F. Troponin. 1. Preparation and physiological function. J Biochem. 1966; 64:465-77.
[51]
Sobieszek A, Bremel RD. Preparation and properties of vertebrate smooth-muscle myofibrils and actomyosin. Eur J Biochem. 1975;55(1):49-60.
[52]
Kendrick-Jones J, Lehman W, Szent-Gy?rgyi AG. Regulation in molluscan muscles. J Mol Biol. 1970;54(2):313-26.
[53]
Szent-Gy?rgyi AG, Szentkiralyi EM, Kendrick-Jonas J. The light chains of scallop myosin as regulatory subunits. J Mol Biol. 1973;74(2):179-203.
[54]
Lehman W, Szent-Gy?rgyi AG. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol. 1975;66(1):1-30.
[55]
Bremel RD. Myosin linked calcium regulation in vertebrate smooth muscle. Nature. 1974;252(5482):405-7.
[56]
Mrwa U, R?egg JC. Myosin-linked calcium regulation in vascular smooth muscle. FEBS Lett. 1975;60(1):81-4.
[57]
Khokhlova VS, Tregubov VS, Danilova VM. Two types of Ca2 + -dependent regulation of actin-myosin interaction in smooth muscles of the pig stomach. Mol Gen Biophys. 1986;(11):28-33.
[58]
Khokhlova VS, Kulikova YaV, Tregubov VS, Danilova VM. The role of myosin phosphorylation in the regulation of smooth muscle actin-myosin interaction. Mol Gen Biophys. 1991. 16: 74-78.
[59]
Ikebe M, Onishi H, Watanabe S. Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule. J Biochem. 1977;82(1):299-302.
[60]
Sobieszek A. Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin. Eur J Biochem. 1977;73(2):477-83.
[61]
Adelstein RS, Conti MA. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975;256(5518):597-8.
[62]
Sobieszek A. Vertebrate smooth muscle myosin. Enzymatic and structural properties. The biochemistry of smooth muscle. Ed. N. L. Stephens. Baltimore: Univ. park press, 1977: 413-43.
[63]
Bremel RD, Sobieszek A, Small JV. Regulation of actin-myosin interaction in vertebrate smooth muscle. Ed. N. L. Stephens. Baltimore: Univ. park press, 1977.: 533-549.
[64]
Barron JT, B?r?ny M, B?r?ny K. Phosphorylation of the 20,000-dalton light chain of myosin of intact arterial smooth muscle in rest and in contraction. J Biol Chem. 1979;254(12):4954-6.
[66]
Burger D, Cox JA, Comte M, Stein EA. Sequential conformational changes in calmodulin upon binding of calcium. Biochemistry. 1984;23(9):1966–71.
[67]
Ngai PK, Carruthers CA, Walsh MP. Isolation of the native form of chicken gizzard myosin light-chain kinase. Biochem J. 1984;218(3):863-70.
[68]
Edelman AM, Lin WH, Osterhout DJ, Bennett MK, Kennedy MB, Krebs EG. Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase. Mol Cell Biochem. 1990;97(1):87-98.
[69]
Di Salvo J, Gifford D, Bialojan C, R?egg JC. An aortic spontaneously active phosphatase dephosphorylates myosin and inhibits actin-myosin interaction. Biochem Biophys Res Commun. 1983;111(3):906-11.
[70]
RR?egg JC, DiSalvo J, Paul RJ. Soluble relaxation factor from vascular smooth muscle: a myosin light chain phosphatase? Biochem Biophys Res Commun. 1982;106(4):1126-33.
[71]
Pato MD, Adelstein RS. Dephosphorylation of the 20,000-dalton light chain of myosin by two different phosphatases from smooth muscle. J Biol Chem. 1980;255(14):6535-8.
[72]
Werth DK, Haeberle JR, Hathaway DR. Purification of a myosin phosphatase from bovine aortic smooth muscle. J Biol Chem. 1982;257(13):7306-9.
[73]
Bialojan C, R?egg JC, Di Salvo J. Phosphatase-mediated modulation of actin-myosin interaction in bovine aortic actomyosin and skinned porcine carotid artery. Proc Soc Exp Biol Med. 1985;178(1):36-45.
[74]
Ikebe M, Hartshorne DJ. Proteolysis and actin-binding properties of 10S and 6S smooth muscle myosin: identification of a site protected from proteolysis in the 10S conformation and by the binding of actin. Biochemistry. 1986;25(20):6177-85.
[75]
Dillon PF, Aksoy MO, Driska SP, Murphy RA. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981;211(4481):495-7.
[76]
Morgan JP, Morgan KG. Vascular smooth muscle: the first recorded Ca2+ transients. Pflugers Arch. 1982;395(1):75-7.
[77]
Stull JT, Gallagher PJ, Herring BP, Kamm KE. Vascular smooth muscle contractile elements. Cellular regulation. Hypertension. 1991;17(6 Pt 1):723-32.
[78]
Morgan KG. The role of calcium in the control of vascular tone as assessed by the Ca2+ indicator aequorin. Cardiovasc Drugs Ther. 1990;4(5):1355-62.
[79]
B?r?ny M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967;50(6):Suppl:197-218.
[80]
Driska SP, Aksoy MO, Murphy RA. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol. 1981;240(5):C222-33.
[81]
Hidaka H, Naka M, Yamaki T. Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin. Biochem Biophys Res Commun. 1979;90(3):694-9.
[82]
Sheterline P. Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca++. Biochem Biophys Res Commun. 1980;93(1):194-200.
[83]
Gergely P, Vereb G, Bot G. Thiophosphate-activated phosphorylase kinase as a probe in the regulation of phosphorylase phosphatase. Biochim Biophys Acta. 1976;429(3):809-16.
[84]
Gratecos D, Fischer EH. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974;58(4):960-7.
[85]
Cassidy P, Hoar PE, Kerrick WG. Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATP gamma S. J Biol Chem. 1979;254(21):11148-53.
[86]
Sherry JM, G?recka A, Aksoy MO, Dabrowska R, Hartshorne DJ. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry. 1978;17(21):4411-8.
[87]
Walsh MP, Dabrowska R, Hinkins S, Hartshorne DJ. Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification, and characterization. Biochemistry. 1982;21(8):1919-25.
[88]
Walsh MP, Bridenbaugh R, Hartshorne DJ, Kerrick WG. Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+. J Biol Chem. 1982;257(11):5987-90.
[89]
Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV. Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem. 1992;267(21):14662-8.
[90]
Small JK, Sobieszek A. Myosin phosphorylation and Ca2+-regulation in vertebrate smooth muscle. Exitation-contraction coupling in smooth muscle. Eds R. Casteels, T. Coodfraind, J. C. Ruegg. Amsterdam: Elsevier, 1977: 385-93.
[91]
Chacko S, Rosenfeld A. Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc Natl Acad Sci U S A. 1982;79(2):292-6.
[92]
Kaminski EA, Chacko S. Effects of Ca2+ and Mg2+ on the actin-activated ATP hydrolysis by phosphorylated heavy meromyosin from arterial smooth muscle. J Biol Chem. 1984;259(14):9104-8.
[93]
Cole HA, Patchell VB, Perry SV. Phosphorylation of chicken gizzard myosin and the Ca2+-sensitivity of the actin-activated Mg2+-ATPase. FEBS Lett. 1983;158(1):17-20.
[94]
Ikebe M, Hartshorne DJ. Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J Biol Chem. 1985;260(24):13146-53.
[95]
Nishikawa M, Shirakawa S, Adelstein RS. Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. Comparative study of the phosphorylated sites. J Biol Chem. 1985;260(15):8978-83.
[96]
Adelstein RS, Conti MA, Hathaway DR, Klee CB. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978;253(23):8347-50.
[97]
Conti MA, Adelstein RS. Phosphorylation by cyclic adenosine 3':5'-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed Proc. 1980;39(5):1569-73.
[98]
Mrwa U, Troschka M, R?egg JC. Cyclic AMP-dependent inhibition of smooth muscle actomyosin. FEBS Lett. 1979;107(2):371-4.
[99]
Silver PJ, DiSalvo J. Adenosine 3':5'-monophosphate-mediated inhibition of myosin light chain phosphorylation in bovine aortic actomyosin. J Biol Chem. 1979;254(20):9951-4.
[100]
Kerrick WG, Hoar PE. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981;292(5820):253-5.
[101]
Stull JT, Hsu LC, Tansey MG, Kamm KE. Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem. 1990;265(27):16683-90.
[102]
Marston SB, Smith CW. The thin filaments of smooth muscles. J Muscle Res Cell Motil. 1985;6(6):669-708.
[103]
Abe M, Takahashi K, Hiwada K. Effect of calponin on actin-activated myosin ATPase activity. J Biochem. 1990;108(5):835-8.
[104]
Haeberle JR, Trybus KM, Hemric ME, Warshaw DM. The effects of smooth muscle caldesmon on actin filament motility. J Biol Chem. 1992;267(32):23001-6.
[105]
Scott-Woo GC, Sutherland C, Walsh MP. Kinase activity associated with caldesmon is Ca2+/calmodulin-dependent kinase II. Biochem J. 1990;268(2):367-70.
[106]
Winder SJ, Walsh MP. Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem. 1990;265(17):10148-55.
[107]
Velaz L, Ingraham RH, Chalovich JM. Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth heavy meromyosin to actin by partial digestion of caldesmon. J Biol Chem. 1990;265(5):2929-34.
[108]
Adams S, DasGupta G, Chalovich JM, Reisler E. Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin. J Biol Chem. 1990;265(32):19652-7.
[109]
Bartegi A, Fattoum A, Kassab R. Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J Biol Chem. 1990;265(4):2231-7.
[110]
Levine BA, Moir AJ, Audemard E, Mornet D, Patchell VB, Perry SV. Structural study of gizzard caldesmon and its interaction with actin. Binding involves residues of actin also recognised by myosin subfragment 1. Eur J Biochem. 1990;193(3):687-96.
[111]
Ga?azkiewicz B, Belagyi J, Dabrowska R. The effect of caldesmon on assembly and dynamic properties of actin. Eur J Biochem. 1989;181(3):607-14.
[112]
Harricane MC, Fabbrizio E, Arpin C, Mornet D. Involvement of caldesmon at the actin-myosin interface. Biochem J. 1992;287 ( Pt 2):633-7.
[113]
Nowak E, Borovikov YS, Dabrowska R. Caldesmon weakens the bonding between myosin heads and actin in ghost fibers. Biochim Biophys Acta. 1989;999(3):289-92.
[114]
Brenner B, Yu LC, Chalovich JM. Parallel inhibition of active force and relaxed fiber stiffness in skeletal muscle by caldesmon: implications for the pathway to force generation. Proc Natl Acad Sci U S A. 1991;88(13):5739-43.
[115]
Chalovich JM, Yu LC, Brenner B. Involvement of weak binding crossbridges in force production in muscle. J Muscle Res Cell Motil. 1991;12(6):503-6.
[116]
Marston S. Aorta caldesmon inhibits actin activation of thiophosphorylated heavy meromyosin Mg2+-ATPase activity by slowing the rate of product release. FEBS Lett. 1988;238(1):147-50.
[117]
Marston SB, Redwood CS. Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. J Biol Chem. 1992;267(24):16796-800.
[118]
Horiuchi KY, Samuel M, Chacko S. Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon. Biochemistry. 1991;30(3):712-7.
[119]
Mezgueldi M, Fattoum A, Derancourt J, Kassab R. Mapping of the functional domains in the amino-terminal region of calponin. J Biol Chem. 1992;267(22):15943-51.
[120]
Vancompernolle K, Vandekerckhove J, Bubb MR, Korn ED. The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. J Biol Chem. 1991;266(23):15427-31.
[121]
Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC. Atomic structure of the actin:DNase I complex. Nature. 1990;347(6288):37-44.
[122]
Horiuchi KY, Chacko S. The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochem Biophys Res Commun. 1991;176(3):1487-93.
[123]
Szpacenko A, Wagner J, Dabrowska R, R?egg JC. Caldesmon-induced inhibition of ATPase activity of actomyosin and contraction of skinned fibres of chicken gizzard smooth muscle. FEBS Lett. 1985;192(1):9-12.
[124]
Taggart MJ, Marston SB. The effects of vascular smooth muscle caldesmon on force production by 'desensitised' skeletal muscle fibres. FEBS Lett. 1988;242(1):171-4.
[125]
Nonomura Y, Ebashi S, Calcium regulatory mechanism in vertebrate smooth muscle. Biomed Res. 1980; 1: 1-14.
[126]
Danilova VM. Regulation of actin-myosin interaction in smooth muscles of vertebrates. Mechanisms of control of muscle activity. L: Nauka, 1985: 128-47.
[127]
Merkel L, Meisheri KD, Pfitzer G. The variable relation between myosin light-chain phosphorylation and actin-activated ATPase activity in chicken gizzard smooth muscle. Modulation by tropomyosin. Eur J Biochem. 1984;138(3):429-34.
[128]
Persechini A, Hartshorne DJ. Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads. Science. 1981;213(4514):1383-5.
[129]
Ebashi S, Mikawa T, Hirata M. et al Regulatory proteins of smooth muscle. Excitationcontraction coupling in smooth muscle. Eds R. Castees, T.Godfraind, J. C. Ruegg. Amsterdam: Elsevier, 1977: 325-34.
[130]
Mikawa T, Nonomura Y, Hirata M, Ebashi S, Kakiuchi S. Involvement of an acidic protein in regulation of smooth muscle contraction by the tropomyosin-leiotonin system. J Biochem. 1978;84(6):1633-6.
[131]
Mikawa T, Nonomura Y, Ebashi S. Does phosphorylation of myosin light chain have direct relation to regulation in smooth muscle? J Biochem. 1977;82(6):1789-91.