Biopolym. Cell. 1995; 11(3-4):24-28, 34.
Про фізико-хімічний механізм
воднево-тритієвого обміну групи С8Н8
нуклеотидних основ пуринового ряду з водою
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Напівемпіричним квантовохімічним методом AMI в режимі оптимізації всіх структурних параметрів з нормою градієнта <.0,01 встановлено, що механізм воднево-тритієвого (Н→Т) обміну групи С8Н8 нуклеотидних основ пуринового ряду та групи С2Н2
імідазолу (Ігп) з водою зводиться до механізму молекулярно-цвітеріонної таутомерії
цих сполук за участю карбопротона Н8 (Н2 у випадку Іпг). Цей висновок зроблено
на тій підставі, що у вільному стані для кожної нуклеотидної основи пуринового ряду
та Іпг основним таутомером-цвітеріоном з-поміж сімейства таутомерів-цвітеріонів, які
формуються шляхом міграції карбопротонів Н8 і Н2 на атоми – акцептори протона,
є такий, що утворюється в результаті переходу карбопротона Н8 (Н2 у випадку Ігп)
на сусідній в імідазольному кільці атом азоту, з'єднаний з атомом С8 (С2 в Ігп) подвійним валентним зв'язком. По суті ця ілідна форма є перехідним станом реакції Н→Т-обміну групи С8Н8 нуклеотидних основ пуринового ряду – аденіну (Ade), гуаніну (Gua), ксантину (Хап), гіпоксантину (Hyp) і пурину (Риг) та групи С2Н2 імідазолу з водою. Молекулярно-кінетичний механізм її формування у водному середовищі при сприятливих значеннях рН – естафетне протонування (атома N 7) основ пуринового ряду і атома N 3 імідазолу) – депротонування (атома Н8 пуринів і атома Н2 імідазолу). На прикладі Ade показано, що навіть на низькомолекулярному рівні
процес Н→Т-обміну є конформаційно чутливим. При цьому наголошується, що швидкість Н→Т-обміну по групі С8Н8 Ade і Gua визначається власне не конформацією нуклеїнової кислоти, а збуренням цієї конформації, яке детермінує енергію активації
обміну, при переході Gua і (або) Ade з основної молекулярної форми в ілідну. З позицій молекулярно-цвітеріонної таутомерії нуклеотидних основ пуринового ряду та Іпг за участю карбопротона Н8 (Н2 в Іпг) зроблено спробу пояснити фізико-хімічний
механізм ініційованої теплом реакції утворення 8-оксипуринів з відповідних пуринів та 2-оксиімідазолу з Іпг у воді: реакція уявляється як взаємодія позитивно зарядженого атома С8 (С2 в Іпг) ілідної форми з негативно зарядженим атомом кисню гідроксилу, що супроводжується відщепленням зайвого атома водню
Повний текст: (PDF, українською)
References
[1]
Boerth DW, Harding FX. Theoretical investigation of acidity and isotope exchange in purine nucleotide cations. J Am Chem Soc. 1985;107(10):2952–69.
[2]
Maslova RN, Lesnik EA, Varshavskiĭ IaM. Kinetics and mechanism of the 3H to 1H in C(8)H groups of purine derivatives. Mol Biol (Mosk). 1975;9(2):310-20.
[3]
Agranovich IM. Conformational features of DNA in solution and in biological objects, revealed by the slow H1-H3 - exchange: Author. dis. ... kand. khim. nauk, Moscow: USSR Academy of Sciences Institute of Molecular Biology, 1985 21 p.
[4]
Benevides JM, Lemeur D, Thomas GJ Jr. Molecular conformations and 8-CH exchange rates of purine ribo- and deoxyribonucleotides: investigation by Raman spectroscopy. Biopolymers. 1984;23(6):1011-24.
[5]
Clark T. Semiempirical moiecular orbital theory: facts, myths and legends. Recent experimental and computational advances in molecular spectroscopy. Dordrecht: Kluwer Acad. Publ., 1993: 369-80.
[6]
Kondratyuk IV, Govorun DM, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of xanthine: AMI calculation. Biopolym Cell. 1994; 10(6):52-60.
[7]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Prototropic molecular-zwitterion tautomerism of hypoxanthine: AMI calculation in vacuum. Biopolym Cell. 1995; 11(1):30-5.
[8]
Govorun DN, Danchuk VD, Mishchuk YR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. AM1 calculation of the nucleic acid bases structure and vibrational spectra. J Mol Struct. 1992;267:99–103.
[9]
Govorun DN, Danchuk VD, Mishchuk YaR, Kondratyuk IV, Radomsky NF, Zheltovsky NV. Mirror symmetrical conformational states of canonical nucleic acid bases. Doklady Akad Nauk Ukrainy. 1992; (2):66-9.
[10]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Nucleotide bases as CH-Acids. Biopolym Cell. 1995; 11(5):15-20.
[11]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular xanthine and its complex formation ability. Biopolym Cell. 1994; 10(6):61-4.
[12]
Govorun DM, Kondratyuk IV, Zheltovsky NV. Acidic-basic properties of molecular hypoxanthine in vacuum. Biopolym Cell. 1995; 11(1):36-9.
[13]
Poltev VI, Bruskov VI, Shuliupina NV, Rein R, Shibata M, Ornstein R, Miller J. Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations. Mol Biol (Mosk). 1993;27(4):734-57.
[14]
Bruskov VI, Petrov AI. Kinetics of formation of 8-oxy-2'-deoxyguanosine-5'-monophosphate under the effect of heat: determination of rate constants and activation energy. Mol Biol (Mosk). 1992;26(6):1362-9.
[15]
Pullman B, Pullman A. Quantum biochemistry. Interscience Publishers. N. Y., 1963; 867 p.