Biopolym. Cell. 1994; 10(3-4):24-38.
Деякі молекулярні механізми посттранскрипційної регуляції експресії генів прокаріот
1Крупська І. В., 1Патон Є. Б.
  1. Інститут клітинної біології та генетичної інженерії НАН України
    вул. Академіка Заболотного, 148, Київ, Україна, 03680

Abstract

Огляд містить розділи, присвячені молекулярном механізмам посттралскрипційного контролю експресії генів. Розглянуто процеси деградації мРНК, участь REP-послідовності в регуляції експресії генів, а також детермінанти експресії на рівні ініціації трансляції послідовність Шайна – Далгарно, відстань відстань до ініціаторного кодона, ініціаторний та другий кодони, рідкіснікодони.

References

[1] Belasco JG, Chen CY. Mechanism of puf mRNA degradation: the role of an intercistronic stem-loop structure. Gene. 1988;72(1-2):109-17.
[2] Belasco JG, Higgins CF. Mechanisms of mRNA decay in bacteria: a perspective. Gene. 1988;72(1-2):15-23.
[3] Klug G, Adams CW, Belasco J, Doerge B, Cohen SN. Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO J. 1987;6(11):3515-20.
[4] Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF. Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell. 1987;48(2):297-310.
[5] Deutscher MP. E. coli RNases: making sense of alphabet soup. Cell. 1985;40(4):731-2.
[6] Régnier P, Hajnsdorf E. Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3' stabilizing stem and loop structure. J Mol Biol. 1991;217(2):283-92.
[7] Robertson HD. Escherichia coli ribonuclease III cleavage sites. Cell. 1982;30(3):669-72.
[8] Saito H, Richardson CC. Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell. 1981;27(3 Pt 2):533-42.
[9] Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O, Oppenheim AB. RNase III stimulates the translation of the cIII gene of bacteriophage lambda. Proc Natl Acad Sci U S A. 1987;84(18):6511-5.
[10] Krinke L, Wulff DL. OOP RNA, produced from multicopy plasmids, inhibits lambda cII gene expression through an RNase III-dependent mechanism. Genes Dev. 1987;1(9):1005-13.
[11] Simons RW, Kleckner N. Biological regulation by antisense RNA in prokaryotes. Annu Rev Genet. 1988;22:567-600.
[12] Portier C, Dondon L, Grunberg-Manago M, Régnier P. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5' end. EMBO J. 1987;6(7):2165-70.
[13] Bardwell JC, Régnier P, Chen SM, Nakamura Y, Grunberg-Manago M, Court DL. Autoregulation of RNase III operon by mRNA processing. EMBO J. 1989;8(11):3401-7.
[14] Régnier P, Grunberg-Manago M. Cleavage by RNase III in the transcripts of the met Y-nus-A-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. J Mol Biol. 1989;210(2):293-302.
[15] Schmeissner U, McKenney K, Rosenberg M, Court D. Removal of a terminator structure by RNA processing regulates int gene expression. J Mol Biol. 1984;176(1):39-53.
[16] Downing WL, Sullivan SL, Gottesman ME, Dennis PP. Sequence and transcriptional pattern of the essential Escherichia coli secE-nusG operon. J Bacteriol. 1990;172(3):1621-7.
[17] Mudd EA, Prentki P, Belin D, Krisch HM. Processing of unstable bacteriophage T4 gene 32 mRNAs into a stable species requires Escherichia coli ribonuclease E. EMBO J. 1988;7(11):3601-7.
[18] Carpousis AJ, Mudd EA, Krisch HM. Transcription and messenger RNA processing upstream of bacteriophage T4 gene 32. Mol Gen Genet. 1989;219(1-2):39-48.
[19] Mudd EA, Carpousis AJ, Krisch HM. Escherichia coli RNase E has a role in the decay of bacteriophage T4 mRNA. Genes Dev. 1990;4(5):873-81.
[20] Tomcsányi T, Apirion D. Processing enzyme ribonuclease E specifically cleaves RNA I. An inhibitor of primer formation in plasmid DNA synthesis. J Mol Biol. 1985;185(4):713-20.
[21] Melefors O, von Gabain A. Site-specific endonucleolytic cleavages and the regulation of stability of E. coli ompA mRNA. Cell. 1988;52(6):893-901.
[22] Lundberg U, von Gabain A, Melefors O. Cleavages in the 5' region of the ompA and bla mRNA control stability: studies with an E. coli mutant altering mRNA stability and a novel endoribonuclease. EMBO J. 1990;9(9):2731-41.
[23] Brawerman G. Determinants of messenger RNA stability. Cell. 1987;48(1):5-6.
[24] Kinscherf TG, Apirion D. Polynucleotide phosphorylase can participate in decay of mRNA in Escherichia coli in the absence of ribonuclease II. Mol Gen Genet. 1975;139(4):357-62.
[25] Donovan WP, Kushner SR. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1986;83(1):120-4.
[26] Burton ZF, Gross CA, Watanabe KK, Burgess RR. The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and DNA primase in E. coli K12. Cell. 1983;32(2):335-49.
[27] Georgiev O, Birnstiel ML. The conserved CAAGAAAGA spacer sequence is an essential element for the formation of 3' termini of the sea urchin H3 histone mRNA by RNA processing. EMBO J. 1985;4(2):481-9.
[28] Kennell D, Riezman H. Transcription and translation initiation frequencies of the Escherichia coli lac operon. J Mol Biol. 1977;114(1):1-21.
[29] Klug G, Cohen SN. Effects of translation on degradation of mRNA segments transcribed from the polycistronic puf operon of Rhodobacter capsulatus. J Bacteriol. 1991;173(4):1478-84.
[30] Belasco JG, Beatty JT, Adams CW, von Gabain A, Cohen SN. Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell. 1985;40(1):171-81.
[31] Higgins CF, Ames GF, Barnes WM, Clement JM, Hofnung M. A novel intercistronic regulatory element of prokaryotic operons. Nature. 1982;298(5876):760-2.
[32] Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell. 1984;37(3):1015-26.
[33] Higgins CF, McLaren RS, Newbury SF. Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion? A review. Gene. 1988;72(1-2):3-14.
[34] Hudson GS, Davidson BE. Nucleotide sequence and transcription of the phenylalanine and tyrosine operons of Escherichia coli K12. J Mol Biol. 1984;180(4):1023-51.
[35] Valentin-Hansen P, Hammer-Jespersen K, Boetius F, Svendsen I. Structure and function of the intercistronic regulatory deoC-deoA element of Escherichia coli K-12. EMBO J. 1984;3(1):179-83.
[36] Gilson E, Rousset JP, Clément JM, Hofnung M. A subfamily of E. coli palindromic units implicated in transcription termination? Ann Inst Pasteur Microbiol. 1986;137B(3):259-70.
[37] Newbury SF, Smith NH, Higgins CF. Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell. 1987;51(6):1131-43.
[38] Merino E, Becerril B, Valle F, Bolivar F. Deletion of a repetitive extragenic palindromic (REP) sequence downstream from the structural gene of Escherichia coli glutamate dehydrogenase affects the stability of its mRNA. Gene. 1987;58(2-3):305-9.
[39] Becerril B, Valle F, Merino E, Riba L, Bolivar F. Repetitive extragenic palindromic (REP) sequences in the Escherichia coli gdhA gene. Gene. 1985;37(1-3):53-62.
[40] Plamann MD, Stauffer GV. Characterization of a cis-acting regulatory mutation that maps at the distal end of the Escherichia coli glyA gene. J Bacteriol. 1985;161(2):650-4.
[41] Froshauer S, Beckwith J. The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Repeated DNA sequences are found in the malE-malF intercistronic region. J Biol Chem. 1984;259(17):10896-903.
[42] Manson MD, Boos W, Bassford PJ Jr, Rasmussen BA. Dependence of maltose transport and chemotaxis on the amount of maltose-binding protein. J Biol Chem. 1985;260(17):9727-33.
[43] Sørensen MA, Kurland CG, Pedersen S. Codon usage determines translation rate in Escherichia coli. J Mol Biol. 1989;207(2):365-77.
[44] Jacques N, Dreyfus M. Translation initiation in Escherichia coli: old and new questions. Mol Microbiol. 1990;4(7):1063-7.
[45] Gold L. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu Rev Biochem. 1988;57:199-233.
[46] Peabody DS. Translation initiation at non-AUG triplets in mammalian cells. J Biol Chem. 1989;264(9):5031-5.
[47] Boni IV, Borodin AM. Rare initiation codons are regulators of the rpoC gene expression. Russian Journal of Bioorganic Chemistry. 1990; 16(8):1134-7
[48] Jacob WF, Santer M, Dahlberg AE. A single base change in the Shine-Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci U S A. 1987;84(14):4757-61.
[49] McCarthy JE, Bokelmann C. Determinants of translational initiation efficiency in the atp operon of Escherichia coli. Mol Microbiol. 1988;2(4):455-65.
[50] Min KT, Kim MH, Lee DS. Search for the optimal sequence of the ribosome binding site by random oligonucleotide-directed mutagenesis. Nucleic Acids Res. 1988;16(11):5075-88.
[51] Looman AC, de Gruyter M, Vogelaar A, van Knippenberg PH. Effects of heterologous ribosomal binding sites on the transcription and translation of the lacZ gene of Escherichia coli. Gene. 1985;37(1-3):145-54.
[52] Looman AC, Bodlaender J, Comstock LJ, Eaton D, Jhurani P, de Boer HA, van Knippenberg PH. Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli. EMBO J. 1987;6(8):2489-92.
[53] Petersen GB, Stockwell PA, Hill DF. Messenger RNA recognition in Escherichia coli: a possible second site of interaction with 16S ribosomal RNA. EMBO J. 1988;7(12):3957-62.
[54] Dalbøge H, Carlsen S, Jensen EB, Christensen T, Dahl HH. Expression of recombinant growth hormone in Escherichia coli: effect of the region between the Shine-Dalgarno sequence and the ATG initiation codon. DNA. 1988;7(6):399-405.
[55] de Boer HA, Shepard HM. Strategies for optimizing foreign gene expression in Escherichia coli. Horiz Biochem Biophys. 1983;7:205-48.
[56] Grundström T, Von Gabain A, Nilsson G, Andersson M, Lundström M, Lund B, Lundgren E. Expression of an interferon-alpha gene variant in E. coli using tandemly repeated synthetic ribosomal binding sites. DNA. 1987;6(1):41-6.
[57] McCarthy JE, Schauder B, Ziemke P. Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA. Gene. 1988;72(1-2):131-9.
[58] Berkhout B, Kastelein RA, van Duin J. Translational interference at overlapping reading frames in prokaryotic messenger RNA. Gene. 1985;37(1-3):171-9.
[59] McCarthy JE, Gualerzi C. Translational control of prokaryotic gene expression. Trends Genet. 1990;6(3):78-85.
[60] Thanaraj TA, Pandit MW. An additional ribosome-binding site on mRNA of highly expressed genes and a bifunctional site on the colicin fragment of 16S rRNA from Escherichia coli: important determinants of the efficiency of translation-initiation. Nucleic Acids Res. 1989;17(8):2973-85.
[61] Tomich CS, Olson ER, Olsen MK, Kaytes PS, Rockenbach SK, Hatzenbuhler NT. Effect of nucleotide sequences directly downstream from the AUG on the expression of bovine somatotropin in E. coli. Nucleic Acids Res. 1989;17(8):3179-97.
[62] Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981;146(1):1-21.
[63] Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 1984;12(17):6663-71.
[64] Bonekamp F, Andersen HD, Christensen T, Jensen KF. Codon-defined ribosomal pausing in Escherichia coli detected by using the pyrE attenuator to probe the coupling between transcription and translation. Nucleic Acids Res. 1985;13(11):4113-23.
[65] Kroupskaya IV, Paton EB. Influence of rare codons in the 5'-terminal regions on the expression of genes rplJ'-lacZ and rplL'-lacZ. Biopolym Cell. 1990; 6(4):102-5.
[66] Sharp PM, Li WH. Codon usage in regulatory genes in Escherichia coli does not reflect selection for 'rare' codons. Nucleic Acids Res. 1986;14(19):7737-49.
[67] Chen GF, Inouye M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 1990;18(6):1465-73.
[68] Inouye M, Chen G. Regulation of gene expression by minor codons in Escherichia coli: minor codon modulator hypothesis. In: Post-transcriptional control of gene expression. Eds J. E. G. McCarthy, M. F. Tuite. Berlin; Heidelberg: Springer-Verlag, 1990;217–25.
[69] Loshon CA, Tovar-Rojo F, Goldrick SE, Setlow P. The expression of a highly expressed Bacillus subtilis gene is not reduced by introduction of multiple codons normally not present in such genes. FEMS Microbiol Lett. 1989;53(1-2):59-63.
[70] Looman AC, de Gruyter M, Vogelaar A, van Knippenberg PH. Effects of heterologous ribosomal binding sites on the transcription and translation of the lacZ gene of Escherichia coli. Gene. 1985;37(1-3):145-54.
[71] Lustig F, Borén T, Guindy YS, Elias P, Samuelsson T, Gehrke CW, Kuo KC, Lagerkvist U. Codon discrimination and anticodon structural context. Proc Natl Acad Sci U S A. 1989;86(18):6873-7.
[72] Buell G, Schulz MF, Selzer G, Chollet A, Movva NR, Semon D, Escanez S, Kawashima E. Optimizing the expression in E. coli of a synthetic gene encoding somatomedin-C (IGF-I). Nucleic Acids Res. 1985;13(6):1923-38.
[73] Looman AC, van Knippenberg PH. Effects of GUG and AUG initiation codons on the expression of lacZ in Escherichia coli. FEBS Lett. 1986;197(1-2):315-20.
[74] Shinedling S, Gayle M, Pribnow D, Gold L. Mutations affecting translation of the bacteriophage T4 rIIB gene cloned in Escherichia coli. Mol Gen Genet. 1987;207(2-3):224-32.
[75] Spanjaard RA, van Dijk MC, Turion AJ, van Duin J. Expression of the rat interferon-alpha 1 gene in Escherichia coli controlled by the secondary structure of the translation-initiation region. Gene. 1989;80(2):345-51.
[76] de Smit MH, van Duin J. Control of prokaryotic translational initiation by mRNA secondary structure. Prog Nucleic Acid Res Mol Biol. 1990;38:1-35.
[77] Gren EJ. Recognition of messenger RNA during translational initiation in Escherichia coli. Biochimie. 1984;66(1):1-29.
[78] Skripkin EA, Adhin MR, de Smit MH, van Duin J. Secondary structure of the central region of bacteriophage MS2 RNA. Conservation and biological significance. J Mol Biol. 1990;211(2):447-63.
[79] Kubo M, Imanaka T. mRNA secondary structure in an open reading frame reduces translation efficiency in Bacillus subtilis. J Bacteriol. 1989;171(7):4080-2.
[80] Ruiz-Linares A, Bouloy M, Girard M, Cahour A. Modulations of the in vitro translational efficiencies of Yellow Fever virus mRNAs: interactions between coding and noncoding regions. Nucleic Acids Res. 1989;17(7):2463-76.
[81] Olsen HS, Nelbock P, Cochrane AW, Rosen CA. Secondary structure is the major determinant for interaction of HIV rev protein with RNA. Science. 1990;247(4944):845-8.
[82] Khudiakov IuE. The Shine-Dalgarno sequence and the effectiveness of translation initiation. Mol Biol (Mosk). 1985;19(3):702-16.
[83] Khudiakov IuE, Kalinina TI, Nepliueva VS, Smirnov VD. Correlation between the effectiveness of translation initiation and secondary structure of mRNA in the hybrid gene cro-lacIZ. Mol Biol (Mosk). 1987;21(6):1504-12.
[84] Nomura N. Regulation of the synthesis of ribosomes and ribosomal component in Escherichia coli: translational regulation and feedback loops. Regulation of gene expression: Symp. of the Soc. for general microbiology. Eds I. Booth, C Higgins. Cambridge: Univ. press, 1986: 199-220.
[85] Ovchinnikov IuA, Sverdlov ED, Tsarev SA, Monastyrskaia GS, Khodkova EM. Properties of human alpha-interferon F and hybrid interferon F/D obtained from recombinant bacteria compared to the properties of an interferon preparation from human leukocytes. Dokl Akad Nauk SSSR. 1983;268(4):996-1000.