Biopolym. Cell. 1993; 9(1):9-15.
Structure and Function of Biopolymers
The effect of myosin regulatory eight chains on the aggregation of myosin active fragments
- Petr Bogach Institute of Physiology
Taras Shevchenko National University of Kyiv
2, Academika Glushkova Ave Str., Kyiv, Ukraine, 03187 - Nencki Institute of Experimental Biology, Polish Academy of Sciences
3, Pasteur Str., 02-093 Warszawa, Poland
Abstract
Aggregative characteristics (at 42 °C) of active skeletal muscle myosin fragments – chymotryptic subfragmenl 1 lacking regulatory light chain (RLC), Mg-papain subfragment 1, containing RLC, and heavy meromyosin, containing dephosphorylated or phosphorylated RLC – were studied comparatively. Besides hydrophobic interactions, divalent cations are shown to exert large influence on binding of RLC with myosin head hinge region. The experimental data suggest that in the presence of divalent cations RLC stabilizes the labile myosin head structures – 50 kDa fragment and «essential» light chain. The effect of RLC phosphorylation is opposite to divalent cation influence:it leads to some destabilization of head structure the evidence for which is the weaker binding of phosphorylated RLC to the head. It may be an inderect indication for «auxiliary» role of RLC phosphoryiation in functioning of skeletal muscle contractive system.
Full text: (PDF, in Russian)
References
[1]
Vibert P, Cohen C. Domains, motions and regulation in the myosin head. J Muscle Res Cell Motil. 1988;9(4):296-305.
[2]
Mornet D, Bonet A, Audemard E, Bonicel J. Functional sequences of the myosin head. J Muscle Res Cell Motil. 1989;10(1):10-24.
[3]
Sivaramakrishnan M, Burke M. The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J Biol Chem. 1982;257(2):1102-5.
[4]
Kendrick-Jones L, Jakes R. Myosin linked regulation: A chemical approach. Myocardial failure Int. symp. EdsRottach-Egern, Tagersee. Berlin, 1977:28-40.
[5]
Kendrick-Jones J, Szentkiralyi EM, Szent-Györgyi AG. Regulatory light chains in myosins. J Mol Biol. 1976;104(4):747-75.
[6]
Lowey S, Slayter HS, Weeds AG, Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969;42(1):1-29.
[7]
Weeds AG, Taylor RS. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975;257(5521):54-6.
[8]
Yamamoto K, Sekine T. Substructure of myosin subfragment-1 as revealed by digestion with proteolytic enzymes. J Biochem. 1980;87(1):219-26.
[10]
Perry SV, Zydowo M. A ribonucleoprotein of skeletal muscle and its relation to the myofibril. Biochem J. 1959;72:682-90.
[11]
Margossian SS, Lowey S. Interaction of myosin subfragments with F-actin. Biochemistry. 1978;17(25):5431-9.
[12]
Stepkowski D, Szczesna D, Wrotek M, Kakol I. Factors influencing interaction of phosphorylated and dephosphorylated myosin with actin. Biochim Biophys Acta. 1985;831(3):321-9.
[13]
Bálint M, Wolf I, Tarcsafalvi A, Gergely J, Sréter FA. Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin. Arch Biochem Biophys. 1978;190(2):793-9.
[14]
Mitchell EJ, Jakes R, Kendrick-Jones J. Localisation of light chain and actin binding sites on myosin. Eur J Biochem. 1986;161(1):25-35.
[15]
Setton A, Muhlrad A. Effect of mild heat treatment on the ATPase activity and proteolytic sensitivity of myosin subfragment-1. Arch Biochem Biophys. 1984;235(2):411-7.
[16]
Burke M, Sivaramakrishnan M. Substructure of skeletal myosin subfragment 1. Preferential destabilization of a domain by methanol and its effect on catalytic activity. J Biol Chem. 1986;261(26):12330-6.
[17]
Babijchuk EB, Filenko AM, Omelyanyuk VS, Danylova VM. Thermal lability of structure of the of 50 kDa domain of myosin subdomain 1. Doklady Akad Nauk Ukr SSR. Ser B. 1989; (1):54-5.
[18]
Zima VL., Filenko AM, Danilova VM, Omel'yanyuk VS. Conformational changes and domain organization of myosin subfragment 1. Mol. genetics and biophysics. K. Vishcha Sk., 1988. Iss 13: 95-101.
[19]
Filenko AM, Zyma VL, Danilova VM, Ometyaniuk VS, Babiychuk EB, Tregubov VS. Structural pattern of subfragment 1 of skeletal muscle myosin. Biopolym Cell. 1990; 6(3):39-46.
[20]
Shnyrov VL, LevitskiÄ DI, Vedenkina NS, Nikolaeva OP, Khvorov NV. Domain structure of myosin subfragment 1. Dokl Akad Nauk SSSR. 1989;304(6):1497-9.
[21]
Levitsky DI structure of the myosin head and the functions of its light chains: Author. dis. ... Dr. biol. nauk. M., 1991. 49 p.
[22]
Potekhin SA, Trapkov VA, Privalov PL. Stages in the thermal denaturation of spiral fragments of myosin. Biofizika. 1979;24(1):46-50.
[23]
Bagshaw CR, Kendrick-Jones J. Identification of the divalent metal ion binding domain of myosin regulatory light chains using spin-labelling techniques. J Mol Biol. 1980;140(3):411-33.
[24]
Werber MM. Metal binding to myosin and to myosin DTNB-light chain. Experientia. 1978;34(5):575-6.
[25]
Minowa O, Matsuda S, Yagi K. Ca2+-induced conformational changes of 20,000 dalton light chain of vertebrate striated muscle myosins. J Biochem. 1983;94(1):25-35.
[26]
Permyakov E. A. Parvalbumin and related calcium-binding proteins. Moscow: Nauka, 1985. 190 p.
[27]
Srivastava S, Muhlrad A, Wikman-Coffelt J. Influence of myosin heavy chains on the Ca2+-binding properties of light chain, LC2. Biochem J. 1981;193(3):925-34.
[28]
Wikman-Coffelt J. Properties of the non-specific calcium-binding sites of rabbit skeletal-muscle myosin. Biochem J. 1980;185(1):265-8.
[29]
Bremel RD. Myosin linked calcium regulation in vertebrate smooth muscle. Nature. 1974;252(5482):405-7.
[30]
Kasman K, Kakol I. The influence of ethylenediaminetetraacetate on white skeletal muscle myosin. Biochim Biophys Acta. 1977;491(2):509-14.
[31]
Schaub MC, Huber P, Jauch A. et al. Removal of regulatory light chains from skeletal muscle myosin affects its interaction with actin by exposing a sticky patch at the base of the head portion. J Muscle Res Cell Motil. 1988;9(:) 81.