Biopolym. Cell. 1992; 8(3):43-46.
Gene-Engineering Biotechnology
Screening of various strains of Streptococcus bovis for the purpose of potentially suitableness to lysine overproduction
1Kalcheva E. O., 2Faiziev M. M., 3Styriak I., 1Maluyta S. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Microbiology
    Uzbekistan
  3. Institute of Animal Physiology, Slovak Academy of Sciences
    Soltesovej 4-6, 040 01 Kosice, Slovak Republic

Abstract

Nine strains of Streptococcus bovis were characterized from the point of view of the potentially ability to produce lysine. The specific activities of aspartate kinase and diaminopimelate decarboxylase, lysine and diaminopimelate contents were assayed in extracts of these strains. It was shown that diaminopimelate decarboxylase activity did not correlate with the lysine production

References

[1] Rees WD, Flint HJ, Fuller MF. A molecular biological approach to reducing dietary amino acid needs. Biotechnology (N Y). 1990;8(7):629-33.
[2] Nakayama K. Lysine. Comprehensive biotechnology. New York. Pergamon press. 1985. Vol. 3: 607-620.
[3] Pat. 3708395 USA. Process for producing L-lysine. K. Nakayama, K. Araki. Publ. 1979.
[4] Kleemann A, Leuchtenberger W, Hoppe B, Tanner H. Amino acids. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim : VCH-Verlagsgesellschaft, 1985. Vol. A2: 57-97.
[5] Chatterjee SP, Banerjee AK. Influence of B-vitamins on growth and extracellular lysine accumulation ofBacillus megaterium (CII 19). Indian J Microbiol. 1972; 12(2): 142-6.
[6] Chatterjee M, Chatterjee SP, Banerjee AK. Dihydrodipicolinate synthase of lysine excreting and non excreting strains of bacillus megaterium. Acta Biotechnol. 1990;10(4):382–4.
[7] Chaudhuri A, Mishra AK, Nanda G. Lysine excretion by S-(2-aminoethyl)L-cysteine resistant mutants of Bacillus subtilis. Acta Microbiol Pol. 1983;32(1):37-45.
[8] Chatterjee M, Chatterjee SP, Banerjee FK. Production of L-Iysine by double auxotrophic and AEC resistant mutants of Bacillus megaterium. Res Ind. 1990; 35(2):133-7.
[9] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[10] Black S. Conversion of aspartic acid to homoserine. Methods Enzymol. 1962;820–7.
[11] White PJ. Diaminopimelate decarboxylase (Escherichia coli). Methods Enzymol. 1971;140–5.
[12] Work E. ?,?-diaminopimelic cid COOH·CH(NH2)·(CH2)3·CH(NH2)·COOH (mol. wt. 190). Methods Enzymol. 1963;624–34.
[13] Bazdyreva NM, Kutseva LS. A spectrophotometric method for determining lysine in the culture fluid of Brevibacterium 22. Prikl Biokhim Mikrobiol. 1974;10(5):756-9.
[14] Kalcheva EO, Faiziev MM, Maluta SS. The isolation and comparative analysis of diaminopimelate decarboxylases, from Streptococcus bovis and Bacillus subtilis. Biochem. and Biotechnol. Electronic Express. 1991; 1(4):7-14.
[15] Kmet V, Kalachnyuk GI, Konik S. et al. Pouzitie kolonizacneho preparatu Amylastim ? stimulacii bachoroveho typu travenia mladat prezuvavcov. Veter Med. 1987; 32(5):705-9.
[16] Styriak I, Timashova-Kalcheva EO, Kme? V, Maljuta SS. DAP-decarboxylase activity and lysine production by rumen bacteria. Arch Tierernahr. 1992;42(1):71-7.