Biopolym. Cell. 1992; 8(3):6-9.
Structure and Function of Biopolymers
Effect of ribosomes on the thermostability of rabbit liver aminoacyl-tRNA synthetases
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Kaunas Medical Academy
Mizkevicha Str. 9, Kaunas, Lithuania, 44307
Abstract
The thermostability of free and associated with polyribosomes aminoacyl-tRNA synthetases from rabbit liver has been studied. The enzymes associated with polyribosomes are more stable to heat inactivation than the free ones. The 80S ribosomes as well as the 40S and 60S ribosomal subunits induce an increase in the thermostability of leucyl-tRNA synthetase in the high-molecular-weight comlpex from rabbit liver.
Full text: (PDF, in Ukrainian) (PDF, in Russian)
References
[1]
Dang CV, Dang CV. Multienzyme complex of aminoacyl-tRNA synthetases: an essence of being eukaryotic. Biochem J. 1986;239(2):249-55.
[2]
Alzhanova AT, Fedorov AN, Ovchinnikov LP. Aminoacyl-tRNA synthetases of rabbit reticulocytes with and without the ability to bind high-Mr RNA. FEBS Lett. 1982;144(1):149-53.
[3]
Fedorov AN, Al'zhanova AT, Ovchinnikov LP. Association of eukaryotic aminoacyl-tRNA-synthases with polyribosomes. Biokhimiia. 1985;50(10):1639-45.
[4]
Spirin AS, Ajtkhozhin MA. Informosomes and polyribosome-associated proteins in eukaryotes. Trends Biochem Sci. 1985;10(4):162–5.
[5]
Graf H. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1976;425(2):175-84.
[6]
El'skaia AV, Ivanov LL, Iaremchuk AD, Stapulenis RR, Iarmolenko VV. Study of the supramolecular organization of eukaryotic aminoacyl-tRNA-synthetases. Ukr Biokhim Zh. 1986;58(6):15-22.
[7]
Martinkus ZP, Ivanov LL, Lekis AV, Lukoshiavichius AK, Prashkiavichius AK. Interaction of eukaryotic aminoacyl-tRNA-synthases with polyribosomes. Vopr Med Khim. 1990;36(5):6-8.
[8]
Tscherne JS, Weinstein IB, Lanks KW, Gersten NB, Cantor CR. Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry. 1973;12(20):3859-65.
[9]
Carias JR, Mouricout M, Quintard B, Thomes JC, Julien R. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects. Eur J Biochem. 1978;87(3):583-90.
[10]
Potapov AP, Ovcharenko GV, Soldatkin KA. Isolation and characterization of 40S-and 60S-ribosomal subunits from rabbit liver. Methods mol biol. Naukova dumka, 1986: 100-5.
[11]
Berestetskaya YUV, Smirnov VN, Surguchev AP. Two-dimensional gel electrophoresis of ribosomal proteins from strains Saccharomyces cerevisiae, carrying a recessive mutation in the suppressor. Nauchnye Doki Vyss Shkoly Biol Nauki. 1981;(3)20-4.
[12]
Sherrer K. Isolation and sucrose gradient analysis od RNA. In: Fundamental Techniques in Virology Ed Habel K. 1969: 416-432.
[13]
Ivanov LL, Lukoshiavichius LIu, Kovalenko MI, BagdonaÄte OD, Lekis AV. Amino acyl tRNA synthetase complexes in rabbit liver in experimental myocardial infarction. Ukr Biokhim Zh. 1983;55(4):368-71.
[14]
Ivanov LL, Martinkus ZP, Stapulionis RR, Lukosevicius LI, Liekls AV. Distribution of leucyl-tRNA synthetase activity in postribosomal extracts from the rabbit liver and pig myocardium. Biopolym Cell. 1989; 5(3):67-70.
[15]
Chuang HY, Bell FE. Use of a thermal inactivation technique to obtain binding constants for the Escherichia coli valyl-tRNA synthetase. Arch Biochem Biophys. 1972;152(2):502-14.