Biopolym. Cell. 1992; 8(1):101-107.
Structure and Function of Biopolymers
Interaction of eukaryotic aminoacyl-tRNA synthetases with ribosomes
1Sana Sara, 2Mozuraitis R. J., 1Kharchenko O. V., 1Ivanov L. L., 1Turkovskaya G. V., 2Martinkus Z. P., 1Kovalenko M. I., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Kaunas Medical Academy
    Mizkevicha Str. 9, Kaunas, Lithuania, 44307

Abstract

The activities of eukaryotic aminoacyl-tRNA synthetases associated with polyribosomes have been determined under the different levels of protein biosynthesis. A decrease of some aminoacyl-tRNA synthetase activities in the fraction of polyribosomes as well as in the fractions of free and membrane-bound ribosomes has been observed during experimental myocardial ischemia, which results in the reduce of the translational level in cell-free system. The activity of leucyl-tRNA synthetase in the fraction of cow mammary gland polyribosome has been increase under lactation. The stimulating effect of 40S and 60S ribosomal subunits and 80S ribosomes on the activity of rabbit liver leucyl-tRNA synthetase as well as on the positive cooperativity of tRNA-binding sites has been revealed.

References

[1] Kisselev LL., Favorova OO, Lavrik OI. Biosynthesis of proteins from amino acids to aminoacyl-tRNA. Moscow, Nauka, 1984; 408 p.
[2] Fedorov AN, Al'zhanova AT, Ovchinnikov LP. Association of eukaryotic aminoacyl-tRNA-synthases with polyribosomes. Biokhimiia. 1985;50(10):1639-45.
[3] Moline G, Hampel A, Enger MD. Polyribosomal and particulate distribution of lysyl- and phenylalanyl-transfer ribonucleic acid synthetases. Biochem J. 1974;143(1):191-5.
[4] Roberts WK, Coleman WH. Particulate forms of phenylalanyl-tRNA synthetase from Ehrlich ascites cells. Biochem Biophys Res Commun. 1972;46(1):206-14.
[5] Tscherne JS, Weinstein IB, Lanks KW, Gersten NB, Cantor CR. Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry. 1973;12(20):3859-65.
[6] Alzhanova AT, Fedorov AN, Ovchinnikov LP, Spirin AS. Eukaryotic aminoacyl-tRNA synthetases are RNA-binding proteins whereas prokaryotic ones are not. FEBS Lett. 1980;120(2):225-9.
[7] Spirin AS, Ajtkhozhin MA. Informosomes and polyribosome-associated proteins in eukaryotes. Trends Biochem Sci. 1985;10(4):162–5.
[8] Alzhanova AT, Fedorov AN, Ovchinnikov LP. Aminoacyl-tRNA synthetases of rabbit reticulocytes with and without the ability to bind high-Mr RNA. FEBS Lett. 1982;144(1):149-53.
[9] Carias JR, Mouricout M, Quintard B, Thomes JC, Julien R. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects. Eur J Biochem. 1978;87(3):583-90.
[10] Graf H. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Biochim Biophys Acta. 1976;425(2):175-84.
[11] Jakubowski H. A role for protein--protein interactions in the maintenance of active forms of aminoacyl-tRNA synthetases. FEBS Lett. 1979;103(1):71-6.
[12] Lekis AV, Buldakova OV, Kovalenko MI, Lukoshiavichius LIu, Prashkiavichius AK. Protein-synthesizing function of the liver of rabbits in experimental myocardial infarct. Biull Eksp Biol Med. 1985;99(1):57-60.
[13] Elska A, Matsuka G, Matiash U, Nasarenko I, Semenova N. tRNA and aminoacyl-tRNA synthetases during differentiation and various functional states of the mammary gland. Biochim Biophys Acta. 1971;247(3):430-40.
[14] Toleikis A, Dzeja P, Praskevicius A, Jasaitis A. Mitochondrial functions in ischemic myocardium. I. Proton electrochemical gradient, inner membrane permeability, calcium transport and oxidative phosphorylation in isolated mitochondria. J Mol Cell Cardiol. 1979;11(1):57-76.
[15] Martinkus ZP, Ivanov LL, Lekis AV, Lukoshiavichius AK, Prashkiavichius AK. Interaction of eukaryotic aminoacyl-tRNA-synthases with polyribosomes. Vopr Med Khim. 1990;36(5):6-8.
[16] Potapov AP, Ovcharenko GV, Soldatkin KA. Isolation and characterization of 40S-and 60S-ribosomal subunits from rabbit liver. Methods mol biol. Naukova dumka, 1986: 100-5.
[17] Berman AE. Method for the isolation of polyribosomes, free and membrane-bound cytoplasmic network. Sovrem Metod biokhim.-M. Meditsina, 1977;300-3.
[18] Ivanov LL, Lukoshiavichius LIu, Kovalenko MI, BagdonaÄ­te OD, Lekis AV. Amino acyl tRNA synthetase complexes in rabbit liver in experimental myocardial infarction. Ukr Biokhim Zh. 1983;55(4):368-71.
[19] Buldakova OV, Negrutskii BS, Shilin VV, Using rRNA-Sepharose for isolation leucyl-tRNA synthetases from animal tissues. Methods mol biol. Naukova Dumka, 1986:115-18.
[20] Ivanov LL, Martinkus ZP, Stapulionis RR, Lukosevicius LI, Liekls AV. Distribution of leucyl-tRNA synthetase activity in postribosomal extracts from the rabbit liver and pig myocardium. Biopolym Cell. 1989; 5(3):67-70.
[21] Lukoshiavichius LIu, Rodovichius GA, Kovalenko MM, PivoriunaÄ­te II, Prashkiavichius AK. tRNA and aminoacyl-tRNA synthetases from the liver of rabbits in experimental myocardial infarction. Vopr Med Khim. 1983;29(4):65-9.
[22] Lishnevskaia EB. Membrane-bound ribosomes. Usp Sovrem Biol. 1977;83(2):182-97.
[23] Leader DP. Protein biosynthesis on membrane-bound ribosomes. Trends Biochem Sci.1979;4(9):205–8.
[24] Ivanov LL, Martinkus ZP, Lekis AV, Lukoshiavichius LIu, Prashkiavichius AK. Distribution of aminoacyl-t-RNA-synthetase activity in rabbit liver cells during disruption of protein biosynthesis in experimental myocardia infarct. Ukr Biokhim Zh. 1989;61(2):34-8.
[25] Thaugh JA, Pendergast AM. Regulation of protein synthesis by phosphorylation of ribosomal protein S6 and aminoacyl-†RNA synthetases1. Prog Nucleic Acid Res Mol Biol. 1986;195–230.
[26] Ryazanov AG, Ovchinnikov LP, Spirin AS. Development of structural organization of protein-synthesizing machinery from prokaryotes to eukaryotes. Biosystems. 1987;20(3):275-88.
[27] Kurganov BI Allosteric enzymes. M.: Nauka, 1978. 248 p.