Biopolym. Cell. 1990; 6(4):84-91.
Structure and Function of Biopolymers
Equilibrium dynamics of protein. Studies in proper fluorescence of melittin
1Ladokhin A. S.
  1. A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR

Abstract

Structural-dynamic organization of melittin molecule has been studied in detail within a wide temperature range. Spectral changes of proper fluorescence for tetra-dimensional milittin observed at low temperatures depend on dissociation rather than on variations in mobility of dipoles as at high temperatures. The previously obtained values of parameters for dipole-orienation mobility of tryptophanyl surroundings are refined. It is shown that value of activation energy of equilibrium structural fluctuations in tetra-dimensional melittin permitting both external quenching agent and quenching groups of protein itself to interact with tryptophanyl equals 10–15 kJ/mol. Reorientation activation energy of internal dipole melittin groups is 30 kJ/mol.

References

[1] Demchenko AP, Kostrzhevskaia EG. Melittin: structure, properties, interaction with a membrane. Ukr Biokhim Zh. 1986;58(5):92-103.
[2] Demchenko AP, Ladokhin AS, Kostrzhevskaia EG. Structural-dynamic properties of the tryptophan residue environment in melittin. Mol Biol (Mosk). 1987;21(3):663-71.
[3] Demchenko AP, Ladokhin AS. Temperature-dependent shift of fluorescence spectra without conformational changes in protein; studies of dipole relaxation in the melittin molecule. Biochim Biophys Acta. 1988;955(3):352-60.
[4] Kamalov VF, Ladokhin AS, Toleutaev BN. Nanosecond intramolecular dynamics of melittin. Dokl Akad Nauk SSSR. 1987;296(3):742-5.
[5] Gershman P, Ladokhin AS, Lebedeva NV, Chikishev AYu. Nanosecond dynamics of melittin: fluorescence spectroscopy with a temporal resolution. Vestnik MGU. Ser. 3. 1989; 30 (3):47-52.
[6] Permyakov EA, Burstein EA. Relaxation processes in frozen aqueous solution in proteins; temperature dependence of fluorescence parameters. Stud biophys. 1975; 51(2):91-103.
[7] Burshtein EA. Natural luminescence of the protein (the nature and application). Itogi nauki i tekhniki. Moscow, VINITI, (Ser. Biofizika; Vol.7) 1977; 190 p.
[8] Brown LR, Lauterwein J, WГјthrich K. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta. 1980;622(2):231-44.
[9] Demchenko AP, Ladokhin AS. Red-edge fluorescence spectroscopy of indole and tryptophan Biopolym. Cell. 1988; 4(4):211-7.
[10] Demchenko AP, Ladokhin AS. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan. Eur Biophys J. 1988;15(6):369-79.
[11] Demchenko AP. Luminescence and dynamics of proteins structure. Kyiv, Naukova Dumka, 1988; 280 p
[12] Talbot JC, Faucon JF, Dufourcq J. Different states of self-association of melittin in phospholipid bilayers. A resonance energy transfer approach. Eur Biophys J. 1987;15(3):147-57.
[13] Tran CD, Beddard GS. Studies of the fluorescence from tryptophan in melittin. Eur Biophys J. 1985;13(1):59-64.
[14] Bushueva TL, Busel EP, Burstein EA. Some regularities of dynamic accessibility of buried fluorescent residues to external quenchers in proteins. Arch Biochem Biophys. 1980;204(1):161-6.
[15] Bushueva TL, Busel EP, Burstein EA. Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochim Biophys Acta. 1978;534(1):141-52.