Biopolym. Cell. 1990; 6(4):84-91.
Structure and Function of Biopolymers
Equilibrium dynamics of protein. Studies in proper fluorescence of melittin
- A. V. Palladin Institute of Biochemistry, Academy of Sciences of the Ukrainian SSR
Kiev, USSR
Abstract
Structural-dynamic organization of melittin molecule has been studied in detail within a wide temperature range. Spectral changes of proper fluorescence for tetra-dimensional milittin observed at low temperatures depend on dissociation rather than on variations in mobility of dipoles as at high temperatures. The previously obtained values of parameters for dipole-orienation mobility of tryptophanyl surroundings are refined. It is shown that value of activation energy of equilibrium structural fluctuations in tetra-dimensional melittin permitting both external quenching agent and quenching groups of protein itself to interact with tryptophanyl equals 10–15 kJ/mol. Reorientation activation energy of internal dipole melittin groups is 30 kJ/mol.
Full text: (PDF, in Russian)
References
[1]
Demchenko AP, Kostrzhevskaia EG. Melittin: structure, properties, interaction with a membrane. Ukr Biokhim Zh. 1986;58(5):92-103.
[2]
Demchenko AP, Ladokhin AS, Kostrzhevskaia EG. Structural-dynamic properties of the tryptophan residue environment in melittin. Mol Biol (Mosk). 1987;21(3):663-71.
[3]
Demchenko AP, Ladokhin AS. Temperature-dependent shift of fluorescence spectra without conformational changes in protein; studies of dipole relaxation in the melittin molecule. Biochim Biophys Acta. 1988;955(3):352-60.
[4]
Kamalov VF, Ladokhin AS, Toleutaev BN. Nanosecond intramolecular dynamics of melittin. Dokl Akad Nauk SSSR. 1987;296(3):742-5.
[5]
Gershman P, Ladokhin AS, Lebedeva NV, Chikishev AYu. Nanosecond dynamics of melittin: fluorescence spectroscopy with a temporal resolution. Vestnik MGU. Ser. 3. 1989; 30 (3):47-52.
[6]
Permyakov EA, Burstein EA. Relaxation processes in frozen aqueous solution in proteins; temperature dependence of fluorescence parameters. Stud biophys. 1975; 51(2):91-103.
[7]
Burshtein EA. Natural luminescence of the protein (the nature and application). Itogi nauki i tekhniki. Moscow, VINITI, (Ser. Biofizika; Vol.7) 1977; 190 p.
[8]
Brown LR, Lauterwein J, WГјthrich K. High-resolution 1H-NMR studies of self-aggregation of melittin in aqueous solution. Biochim Biophys Acta. 1980;622(2):231-44.
[9]
Demchenko AP, Ladokhin AS. Red-edge fluorescence spectroscopy of indole and tryptophan Biopolym. Cell. 1988; 4(4):211-7.
[10]
Demchenko AP, Ladokhin AS. Red-edge-excitation fluorescence spectroscopy of indole and tryptophan. Eur Biophys J. 1988;15(6):369-79.
[11]
Demchenko AP. Luminescence and dynamics of proteins structure. Kyiv, Naukova Dumka, 1988; 280 p
[12]
Talbot JC, Faucon JF, Dufourcq J. Different states of self-association of melittin in phospholipid bilayers. A resonance energy transfer approach. Eur Biophys J. 1987;15(3):147-57.
[13]
Tran CD, Beddard GS. Studies of the fluorescence from tryptophan in melittin. Eur Biophys J. 1985;13(1):59-64.
[14]
Bushueva TL, Busel EP, Burstein EA. Some regularities of dynamic accessibility of buried fluorescent residues to external quenchers in proteins. Arch Biochem Biophys. 1980;204(1):161-6.
[15]
Bushueva TL, Busel EP, Burstein EA. Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochim Biophys Acta. 1978;534(1):141-52.