Biopolym. Cell. 1989; 5(6):32-39.
Structure and Function of Biopolymers
Theoretical studies in low-frequency vibrations of DNA macromolecules
1Volkov S. N., 2Kosevich A. M., 1, 3Wainreb G. E.
  1. Institute for Theoretical Physics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR
  2. Institute for Low Temperature Physics and Engineering, Academy of Sciences of the Ukrainian SSR
    Kharkov, USSR
  3. Provisional Research Collective "Otklik"
    Kiev, USSR

Abstract

The theoretical investigation of low-frequency dynamics of DNA macromolecules is theoretically studied taking into account the hydrogen bond stretching in base pairs, the backbone flexibility and intranucleoside mobility. The structure of low-frequency macro-molecule vibration spectrum is determined. Using the theoretical results obtained and their correlation with DNA Raman spectra the interpretation of the set of experimental data is presented.

References

[1] Maleev VIa. Spiral oscillation of bases in nucleic acid. Biofizika. 1965;10(5):729-34.
[2] Painter PC, Mosher L, Rhoads C. Low-frequency modes in the raman spectrum of DNA. Biopolymers. 1981;20(1):243–7.
[3] Urabe H, Tominaga Y. Low-frequency Raman spectra of DNA. J Phys Soc Japan. 1981. 50:3643-3644.
[4] Urabe H, Tominaga Y. Low-lying collective modes of DNA double helix by Raman spectroscopy. Biopolymers. 1982;21(12):2477-81.
[5] Urabe H. Experimental evidence of collective vibrations in DNA double helix (Raman spectroscopy). J Chem Phys. 1983;78(10):5937-9.
[6] Urabe H, Hayashi H, Tominaga Y, Nishimura Y, Kubota K, Tsuboi M. Collective vibrational modes in molecular assembly of DNA and its application to biological systems. Low frequency Raman spectroscopy. J Chem Phys. 1985;82(1):531-5.
[7] Lindsay S, Powell J, Rupprecht A. Observation of Low-Lying Raman Bands in DNA by Tandem Interferometry. Phys Rev Lett. 1984;53(19):1853–5.
[8] Demarco C, Lindsay SM, Pokorny M, Powell J, Rupprecht A. Interhelical effects on the low-frequency modes and phase transitions of Li- and Na-DNA. Biopolymers. 1985;24(11):2035-40.
[9] Urabe H, Sugawara Y, Tsukakoshi M, Ikegami A, Iwasaki H, Kasuya T. Raman spectroscopic study on low-frequency collective modes in self-associates of guanosine monophosphates. Biopolymers. 1987;26(6):963–71.
[10] Prohofsky E., Lu K., Van Zandt L., Putnam B. Breathing modes and induced resonant melting of the double helix. Phys Lett. 1979;70(5-6):492–4.
[11] Mei WN, Kohli M, Prohofsky EW, Van Zandt LL. Acoustic modes and nonbonded interactions of the double helix. Biopolymers. 1981;20(4):733-52.
[12] Wittlin A, Genzel L, Kremer F, Haseler S, Poglitsch A, Rupprecht A. Far-infrared spectroscopy on oriented films of dry and hydrated DNA. Phys Rev A. 1986;34(1):493-500.
[13] Chou KC. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem. 1988;30(1):3-48.
[14] Volkov SN, Kosevich AM. Conformational fluctuations of double-stranded DNA. Kyiv, 1986; (PrePrint. UkSSR. Inst theor. Physics; N 86-119R) 25 p.
[15] Volkov SN, Kosevich AM. Conformation oscillations of DNA. Mol Biol (Mosk). 1987;21(3):797-806.
[16] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[17] Volkov SN, Kosevich AM, Weinreb GE. Spectrum of low-frequency vibrations of DNA macromolecules. Kiev, 1988. (Preprint . Acad. Sci. of Ukr. S.S.R., Inst. Theor. Phys; 88-177E). 19 p.