Biopolym. Cell. 1989; 5(3):102-109.
Structure and Function of Biopolymers
Independent visualization of receptors for the native and modified low density lipoproteins in cell cultures
- Research Institute of Experimental Cardiology, National Cardiological Research Centre, Academy of Medical Sciences of the USSR
Moscow, USSR
Abstract
The method is suggested to prepare cholesteryl esters derivatives containing fluorescent chromophores in acyl chains. The reconstitution of low-density lipoproteins (native and malondialdehyde-treated ones) has been carried out by fluorescent cholesteryl esters. Using the receptor mediated binding of fluorescent lipoproteins to human skin fibro-blasts and mouse macrophages the possibility of independent visualization of receptors is shown by means of fluorescent microscopy using observations with different vawe-lenghts
Full text: (PDF, in Russian)
References
[1]
Brown MS, Goldstein JL. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci U S A. 1979;76(7):3330-7.
[2]
Mahley RW, Innerarity TL. Lipoprotein receptors and cholesterol homeostasis. Biochim Biophys Acta. 1983;737(2):197-222.
[3]
Goldstein JL, Brown MS. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974;249(16):5153-62.
[4]
Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci U S A. 1981;78(10):6499-503.
[5]
Pitas RE, Innerarity TL, Mahley RW. Foam cells in explants of atherosclerotic rabbit aortas have receptors for beta-very low density lipoproteins and modified low density lipoproteins. Arteriosclerosis. 1983;3(1):2-12.
[6]
Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979;76(1):333-7.
[7]
Mahley RW, Innerarity TL, Weisgraber KB, Oh SY. Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modification of lysine residues of the apoproteins. J Clin Invest. 1979;64(3):743-50.
[8]
Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci U S A. 1980;77(4):2214-8.
[9]
Brown MS, Goldstein JL. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu Rev Biochem. 1983;52:223-61.
[10]
Sklar LA, Mantulin WW, Pownall HJ. Fluorescent cholesteryl esters in the core of low density lipoprotein. Biochem Biophys Res Commun. 1982;105(2):674-80.
[11]
Kao YJ, Soutar AK, Hong KY, Pownall HJ, Smith LC. N-(2-Naphthyl)-23,24-dinor-5-cholen-22-amin-3beta-ol, a fluorescent cholesterol analogue. Biochemistry. 1978;17(13):2689-96.
[12]
Krieger M, Smith LC, Anderson RG, Goldstein JL, Kao YJ, Pownall HJ, Gotto AM Jr, Brown MS. Reconstituted low density lipoprotein: a vehicle for the delivery of hydrophobic fluorescent probes to cells. J Supramol Struct. 1979;10(4):467-78.
[13]
Falck JR, Krieger M, Goldstein JL, Brown MS. Preparation and spectral properties of lipophilic fluorescein derivatives: application to plasma low-density lipoprotein. J Am Chem Soc. 1981;103(24):7396–8.
[14]
Craig IF, Via DP, Mantulin WW, Pownall HJ, Gotto AM Jr, Smith LC. Low density lipoproteins reconstituted with steroids containing the nitrobenzoxadiazole fluorophore. J Lipid Res. 1981;22(4):687-96.
[15]
Krieger M, Brown MS, Faust JR, Goldstein JL. Replacement of endogenous cholesteryl esters of low density lipoprotein with exogenous cholesteryl linoleate. Reconstitution of a biologically active lipoprotein particle. J Biol Chem. 1978;253(12):4093-101.
[16]
Sklar LA, Craig IF, Pownall HJ. Induced circular dichroism of incorporated fluorescent cholesteryl esters and polar lipids as a probe of human serum low density lipoprotein structure and melting. J Biol Chem. 1981;256(9):4286-92.
[17]
Patsch JR, Sailer S, Kostner G, Sandhofer F, Holasek A, Braunsteiner H. Separation of the main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. J Lipid Res. 1974;15(4):356-66.
[18]
Lindgren FT. Preparative ultracentrifugal laboratory procedures and suggestions for lipoprotein analysis. Analysis lipids and lipoproteins. Ed. E. C. Perkins. New York: Amer. Oil Chemists Soc., 1975:204-224.
[19]
Haberland ME, Fogelman AM, Edwards PA. Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci U S A. 1982;79(6):1712-6.
[20]
Lowry OH, Rosebrough NJ, Farr AL, RANDALL RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265-75.
[21]
Preobrazhensky SN, Ivanov VO, Fuki IV, Tsibulsky VP, Kameneva AM, Repin VS, Ermolin GA. Enzyme-linked immunoreceptor assay of low-density-lipoprotein receptors. Anal Biochem. 1985;149(1):269-74.
[22]
Vaskovsky VE, Kostetsky EY, Vasendin IM. A universal reagent for phospholipid analysis. J Chromatogr. 1975;114(1):129-41.
[23]
Vladimirov YuA, Dobretsov GE. Fluorescent Probes in the study of biological membranes. Moskow, Nauka, 1980; 320 P.
[24]
Preobrazhensky SN, Tsibulsky VP, Fuki IV, Ivanov VO, Repin VS, Smirnov VN. Enzyme immunoassay of the receptors for modified low density lipoprotein. Anal Biochem. 1986;154(2):382-7.
[25]
A. c. USSR 1126574, MKI4, H 1 February. 08. Process for Producing sPin-labeled cholesteryl ester, and sPin-labeled lecithin. AYu Misharin, NG Bushmakina, BK Chernov. Otkrytiya. Izobreteniya. 1984; 44:109-111.
[26]
Lehrer SS. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971;10(17):3254-63.