Biopolym. Cell. 1989; 5(1):32-35.
Structure and Function of Biopolymers
Binding of aminoacyl-tRNA to A-site induces no removal of deacylated tRNA from E-site of 70S ribosome
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
Gatchina, Leningrad distr., USSR - Institute of Ecological Genetics, Academy of Sciences of the Moldavian SSR
Kishinev, USSR
Abstract
EF-Tu-dependent and independent aminoacyl-tRNA binding to A-site of 70S ribosome as well as peptide-bound formation have no influence on the binding and dissociation of deacylated tRNA with E-site of ribosome.
Full text: (PDF, in Russian)
References
[1]
Rheinberger HJ, Nierhaus KH. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983;80(14):4213-7.
[2]
Nierhaus KH, Rheinberger H-J. An alternative model for the elongation cycle of protein biosynthesis. Trends Biochem Sci. 1984;9(10):428–32.
[4]
Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981;78(9):5310-4.
[5]
Rheinberger HJ., Nierhaus KH. Simultaneous binding of three tRNA molecules by the ribosomes of Escherichia coli. Biochem Int. 1980; 1(4):297-303.
[6]
Grajevskaja RA, Ivanov YV, Saminsky EM. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982;128(1):47-52.
[7]
Wettstein FO, Noll H. Binding of transfer ribonucleic acid to ribosomes engaged in protein synthesis: number and properties of ribosomal binding sites. J Mol Biol. 1965;11:35-53.
[8]
Kirillov SV, Makarov EM, Semenkov YuP. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983;157(1):91-4.
[9]
Lill R., Robertson J. M., Wintermeyer W. tRNA-ribosome complex formation: equilibrium and kinetic studies. Hoppe-Seyler's Z. Physiol. Chem. 1983; 364(9):1171-1172.
[10]
Dorokhov DB, Burd SB, Semenkov YuP. Interaction TPHKPhe-CCA (3'NH) * Phe-analog aminoacyl-tRNA with 70S ribosome. Izv akad nauk MoldSSR. 1985; 4:10-13.
[11]
Robertson J. M., Lill R., Wintermeyer W. Elongation factor G-induced realised of tRNA during ribosomal translocation. 5th Int. symp. metabolism and enzymol. of nucl. acids. Bratislava: Publ. Hause Slovak Acad. Sci., 1984:349-360.
[12]
Kirillov SV, Makhno VI, Semenkov YP. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA. Nucleic Acids Res. 1980;8(1):183-96.
[13]
Katunin VI, Semenkov YP, Makhno VI, Kirillov SV. Comparative study of the interaction of polyuridylic acid with 30S subunits and 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1980;8(2):403-21.
[14]
Semenkov YuP, Makarov EM, Kirillov SV. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. Biopolym. Cell. 1985; 1(4):183-93.
[15]
Kirillov SV, Semenkov YuP. Non-exclusion principle of Ac-Phe-tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes. FEBS Lett. 1982;148(2):235-8.
[16]
Kirillov SV, Makhno VI, Odinzov VB, Semenkov YP. The mechanism of codon-anticodon interaction in ribosomes. Heterogeneity of tRNA complexes with 70-S ribosomes of Escherichia coli. Eur J Biochem. 1978;89(1):305-13.
[17]
Arai KI, Kawakita M, Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972;247(21):7029-37.
[18]
Odinzov VB, Kirillov SV. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1978;5(10):3871-9.