Biopolym. Cell. 1988; 4(2):91-100.
Cell Biology
Nocodazole inactivates microtubule organizing centres and induces the formation of local zones of microtubule polymerization in k-mitosis
1Alieva I. B., 1Vorobjev I. A.
  1. A. N. Belozersky Interfaculty Laboratory of Molecular Biology and Bioorganic Chemistry,
    M. V. Lomonosov State University
    Moscow, USSR

Abstract

Under the action of nocodasole at a concentration of 0.02 μg/ml the mitotic spindle is preserved in PE cells. Nocodazole at a concentration of 0.2 μg/ml results in the appearance of microtubule (MT) convergence centres lacking the centrioles and/or chromosomes. Bundles of MT bypass kinetochores, kinetochores become 1.5–3-times as long. At a nocodazole concentration of 0.02–0.2 μg/ml the daughter centriole becomes 1.5–2-fold as long. Under the action of nocodazole at a concentration of 0.6 μg/ml all chromosomes are packed in a slot-like structure. Kinetochores of several chromosomes surrounding one «slot» may be situated on their inner surfaces. Then short disorderly MT are observed in such a «slot». The centrioles are not surrounded by MT. In each cell one diplosome (rarely both) disintegrate. It is supposed that the appearance of three- and tetrapolar mitoses in tissue culture cells is due to the disintegration of one or both diplosomes, respectively.

References

[1] Kleinfeld RG, Sisken JE. Morphological and kinetic aspects of mitotic arrest by and recovery from colcemid. J Cell Biol. 1966;31(3):369-79.
[2] Brinkley BR, Stubblefield E, Hsu TC. The effects of colcemid inhibition and reversal on the fine structure of the mitotic apparatus of Chinese hamster cells in vitro. J Ultrastruct Res. 1967;19(1):1-18.
[3] Alieva IB, Vorob'ev IA. Conditions of the reversibility of metaphase arrest and induction of multi-polar mitoses after treatment with nocodazole. Tsitologiia. 1987;29(5):560-8.
[4] Vorobjev IA, Chentsov YuS. Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982;93(3):938-49.
[5] De Brabander MJ, Van de Veire RM, Aerts FE, Borgers M, Janssen PA. The effects of methyl (5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl) carbamate, (R 17934; NSC 238159), a new synthetic antitumoral drug interfering with microtubules, on mammalian cells cultured in vitro. Cancer Res. 1976;36(3):905-16.
[6] Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980;77(3):1561-5.
[7] Horwitz SB, Parness J, Schiff PB, Manfredi JJ. Taxol: a new probe for studying the structure and function of microtubules. Cold Spring Harb Symp Quant Biol. 1982;46 Pt 1:219-26.
[8] Brenner SL, Brinkley BR. Tubulin assembly sites and the organization of microtubule arrays in mammalian cells. Cold Spring Harb Symp Quant Biol. 1982;46 Pt 1:241-54.
[9] Weisenberg RC, Cianci C. ATP-induced gelation--contraction of microtubules assembled in vitro. J Cell Biol. 1984;99(4 Pt 1):1527-33.
[10] Weisenberg RC, Allen RD, Inoue S. ATP-dependent formation and motility of aster-like structures with isolated calf brain microtubule proteins. Proc Natl Acad Sci U S A. 1986;83(6):1728-32.
[11] Witt PL, Ris H, Borisy GG. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma. 1980;81(3):483-505.
[12] de Brabander M, Geuens G, Nuydens R et al. The microtubule nucleating and organizing activity of kinetochores and centrosomes in living PtK2-cells. In: Microtubules and microtubule inhibitors. Eds M. de Brabander, J. de Mey. Amsterdam : Elsevier, 1980:255-276.
[13] Bystrevskaia VB, Onishchenko GE, Chentsov IuS. Dynamics of the mitotic cycle and mitosis anomalies in 2-mercaptoethanol action on pig embryo kidney tissue culture cells. Tsitologiia. 1981;23(6):638-46.
[14] Keryer G, Ris H, Borisy GG. Centriole distribution during tripolar mitosis in Chinese hamster ovary cells. J Cell Biol. 1984;98(6):2222-9.
[15] Mazia D, Harris PJ, Bibring T. The Multiplicity of the Mitotic Centers and the Time-Course of Their Duplication and Separation. J Biophys Biochem Cytol. 1960;7(1):1-20.
[16] Sluder G, Rieder CL. Centriole number and the reproductive capacity of spindle poles. J Cell Biol. 1985;100(3):887-96.
[17] Stubblefield E, Brinkley BR. Cilia formation in Chinese hamster fibroblasts in vitro as a response to colcemid treatment. J Cell Biol. 1966;30(3):645-52.
[18] Krishan A. Fine structure of the kinetochores in vinblastine sulfate-treated cells. J Ultrastruct Res. 1968;23(1):134-43.
[19] Alov IA, Lyubskii SL. Functional morphology of the kinetochore. Int Rev Cytol Suppl. 1977;(6):59-74.
[20] Mitchison TJ, Kirschner MW. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol. 1985;101(3):755-65.
[21] Brinkley BR, Stubblefield E. Ultrastructure and interaction of the kinetochore and centriole in mitosis and meiosis. Advances in cell biology. Eds D. M. Prescott et al. New York : Appelton-Century Crofts, 1970. Vol. 1:119-185.
[22] Peterson SP, Berns MW. The centriolar complex. Int Rev Cytol. 1980;64:81-106.
[23] Brinkley BR. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145-72.
[24] Kirschner MW. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980;86(1):330-4.
[25] Tucker JB. Spatial organization of microtubule-organizing centers and microtubules. J Cell Biol. 1984;99(1 Pt 2):55s-62s.
[26] Mitchison T, Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15-21;312(5991):232-7.
[27] Vorob'ev IA, Chentsov IuS. Centrioles and microtubules in interphase cells exposed to colcemid. The concentration- and time-dependent effect of the action of the poison. Tsitologiia. 1985;27(10):1101-5.