Biopolym. Cell. 2023; 39(2):146-151.
Short Communications
Pharmacological blockade of neuraminidase activity does not affect paired-pulse plasticity in hippocampal CA3-to-CA1 network
1Savotchenko A. V., 2Isaeva E. V., 1Isaev D. S.
  1. O. O. Bogomoletz Institute of Physiology, NAS of Ukraine
    4, Akademika Bogomoltsa Str., Kyiv, Ukraine, 01004
  2. Medical College of Wisconsin
    8701, Watertown Plank Road Milwaukee, Wisconsin, WI, USA, 53226

Abstract

Aim. In the present study, we investigated the role of NEU inhibition in hippocampal short-term memory processing. We previously showed that NEU blockage results in a significant decrease in long-term potentiation (LTP) and an increase in short-term depression of hippocampal CA3-to-CA1 network in the stratum radiatum. Methods. Using specific blocker N-Acetyl-2,3-dehydro-2-deoxyneuraminic acid (NADNA), we examined the effect of downregulation of NEU activity on paired-pulse plasticity at Schaffer collateral-CA1 pyramidal cell synapses of the rat hippocampus. Results. The present study demonstrates that suppression of endogenous NEU causes an increase in the excitatory postsynaptic potentials without alterations in paired-pulse ratio. Conclusions. Inhibition of NEU activity did not affect paired-pulse plasticity, which reflects changes in the release probability of presynaptic site. We hypothesized that effect of NADNA on basal transmission and LTP is due to the involvement of postsynaptic mechanisms.
Keywords: neuraminidase blocker, synaptic plasticity, hippocampus

References

[1] Isaev D, Isaeva E, Shatskih T, Zhao Q, Smits NC, Shworak NW, Khazipov R, Holmes GL. Role of extracellular sialic acid in regulation of neuronal and network excitability in the rat hippocampus. J Neurosci. 2007; 27(43):11587-94.
[2] Sato Y, Akimoto Y, Kawakami H, Hirano H, Endo T. Location of sialoglycoconjugates containing the Sia(alpha)2-3Gal and Sia(alpha)2-6Gal groups in the rat hippocampus and the effect of aging on their expression. J Histochem Cytochem. 2001; 49(10):1311-9.
[3] Savrasova AV, Lushnikova IV, Isaeva EV, Skibo GG, Isaev DS, Kostyuk PG. The effect of neuraminidase blocker on gabazine-induced seizures in rat hippocampus. Fiziol Zh. 2010; 56(4):14-8.
[4] Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Blockade of endogenous neuraminidase leads to an increase of neuronal excitability and activity-dependent synaptogenesis in the rat hippocampus. Eur J Neurosci. 2010; 32(11):1889-96.
[5] Isaeva E, Lushnikova I, Savrasova A, Skibo G, Holmes GL, Isaev D. Effect of neuraminidase treatment on persistent epileptiform activity in the rat hippocampus. Pharmacol Rep. 2011; 63(3):840-4.
[6] Savotchenko A, Romanov A, Isaev D, Maximyuk O, Sydorenko V, Holmes GL, Isaeva E. Neuraminidase inhibition primes short-term depression and suppresses long-term potentiation of synaptic transmission in the rat hippocampus. Neural Plast. 2015; 2015:1-10.
[7] Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology. 2012; 22(7):880-96.
[8] Becker CG, Artola A, Gerardy-Schahn R, Becker T, Welzl H, Schachner M. The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J Neurosci Res. 1996; 45(2):143-52.
[9] Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis. Prog Neurobiol. 2006; 80(3):129-64.
[10] Gascon E, Vutskits L, Kiss JZ. Polysialic acid-neural cell adhesion molecule in brain plasticity: from synapses to integration of new neurons. Brain Res Rev. 2007; 56(1):101-18.
[11] Usami A, Sasaki T, Satoh N, Akiba T, Yokoshima S, Fukuyama T, Yamatsugu K, Kanai M, Shibasaki M, Matsuki N, Ikegaya Y. Oseltamivir enhances hippocampal network synchronization. J Pharmacol Sci. 2008; 106(4):659-62.
[12] Minami A, Saito M, Mamada S, Ieno D, Hikita T, Takahashi T, Otsubo T, Ikeda K, Suzuki T. Role of Sialidase in Long-Term Potentiation at Mossy Fiber-CA3 Synapses and Hippocampus-Dependent Spatial Memory. PLoS One. 2016; 11(10):e0165257.
[13] Abbott LF, Varela JA, Sen K, Nelson SB. Synaptic depression and cortical gain control. Science. 1997; 275(5297):220-4.
[14] Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA. Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol. 1993; 70(4):1451-9.
[15] Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002; 64:355-405.
[16] Izumi Y, Tokuda K, O'dell KA, Zorumski CF, Narahashi T. Neuroexcitatory actions of Tamiflu and its carboxylate metabolite. Neurosci Lett. 2007; 426(1):54-8.
[17] Muller D, Wang C, Skibo G, Toni N, Cremer H, Calaora V, Rougon G, Kiss JZ. PSA-NCAM is required for activity-induced synaptic plasticity. Neuron. 1996; 17(3):413-22.
[18] Izumi Y, Tokuda K, O'Dell K, Zorumski C, Narahashi T. Synaptic and behavioral interactions of oseltamivir (Tamiflu) with neurostimulants. Hum Exp Toxicol. 2008; 27(12):911-7.
[19] Nicoll RA, Malenka RC. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature. 1995; 377(6545):115-8.
[20] Fioravante D, Regehr WG. Short-term forms of presynaptic plasticity. Curr Opin Neurobiol. 2011; 21(2):269-74.
[21] Gambrill AC, Storey GP, Barria A. Dynamic regulation of NMDA receptor transmission. J Neurophysiol. 2011; 105(1):162-71.
[22] Heine M, Groc L, Frischknecht R, Béïque JC, Lounis B, Rumbaugh G, Huganir RL, Cognet L, Choquet D. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science. 2008; 320(5873):201-5.