Biopolym. Cell. 2023; 39(1):42-53.
Bioorganic Chemistry
New polyfunctionalized 2-hydrazinoanthraquinone derivatives as potential antimicrobial agents
1Lozynskyi A. V., 1Konechnyi Y. T., 1Roman O. M., 1Horishny V. Ya., 2Sabadakh O. P., 1Pasichnyk S. M., 3Konechna R. T., 2Shupeniuk V. I., 2Taras T. M., 1, 4Lesyk R. B.
  1. Danylo Halytsky Lviv National Medical University
    69, Pekarska Str., Lviv, Ukraine, 79010
  2. Vasyl Stefanyk Precarpathian National University
    57, Shevchenko Str., Ivano-Frankivsk, Ukraine, 76018
  3. Lviv Polytechnic National University
    12, Stepan Bandera Str., Lviv, Ukraine, 79013
  4. University of Information Technology and Management in Rzeszow
    2, Sucharskiego Str., Rzeszow, Poland, 35-225

Abstract

Aim. Synthesis and study of new polyfunctionalized 2-hydrazinoanthraquinone derivatives as potential antimicrobial agents. Methods. Organic synthesis, NMR and LC-MS spectroscopy, agar diffusion and broth microdilution methods. Results. A series of anthraquinonehydrazone derivatives are synthesized using the reaction of 2-(morpholinodiazenyl)anthracene-9,10-dione with methylene active compounds in the acetic acid medium. The screening of antimicrobial activity identified the compounds with significant effects against the tested microorganisms with MIC value <186.9 μM. Compounds 5 and 11 with MIC <93.5 μM are effective against yeast fungi whereas compound 5 with MIC <186.9 μM is effective against P.putida, which is multidrug resistant to antibiotics. Conclusions. The obtained hydrazino-anthraquinone derivatives constitute an interesting background for the design of new synthetic agents with antimicrobial activity.
Keywords: anthraquinones, methylene active compounds, 4-thiazolidinones, antimicrobial activity

References

[1] Al-Otaibi JS, Teesdale-Spittle P, El Gogary TM. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study. J Mol Struct. 2017; 1127:751-60.
[2] Balachandran C, Arun Y, Duraipandiyan V, Ignacimuthu S, Balakrishna K, Al-Dhabi NA. Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127). Appl Biochem Biotechnol. 2014; 172(7):3513-28.
[3] Stasevych M, Zvarych V, Lunin V, Kopak N, Komarovska-Porokhnyavets O, Deniz NG, Sayil C, Ozyurek M, Guclu K, Vovk M, Novikov V. Synthesis and investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones. Monatsh Chem. 2018; 149(6):1111-9.
[4] Hietala P, Marvola M, Parviainen T, Lainonen H. Laxative potency and acute toxicity of some anthraquinone derivatives, senna extracts and fractions of senna extracts. Pharmacol Toxicol. 1987; 61(2):153-6.
[5] Luo H, Wang Y, Qin Q, Wang Y, Xu J, He X. Anti-inflammatory naphthoates and anthraquinones from the roots of Morinda officinalis. Bioorg Chem. 2021; 110:104800.
[6] Duval J, Pecher V, Poujol M, Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind Crops Prod. 2016; 94:812-33.
[7] Asati V, Mahapatra DK, Bharti SK. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur J Med Chem. 2014; 87:814-33.
[8] Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK. 4-Thiazolidinones: the advances continue…. Eur J Med Chem. 2014; 72:52-77.
[9] Horishny V, Kartsev V, Geronikaki A, Matiychuk V, Petrou A, Glamoclija J, Ciric A, Sokovic M. 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic Acids as Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules. 2020; 25(8):1964.
[10] Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem. 2006; 14(11):3859-64.
[11] Singh IP, Gupta S, Kumar S. Thiazole Compounds as Antiviral Agents: An Update. Med Chem. 2020; 16(1):4-23.
[12] Ilkiv II, Lesyk RB, Sklyarov OYa. The influence of novel 4-thiazolidinone derivaties in cytoprotective mechanisms of small intestine under nsaid-induced damage. Ukr Biochem J. 2016; 88(Special Issue):99-104.
[13] Sklyarova Y, Fomenko I, Lozynska I, Lozynskyi A, Lesyk R, Sklyarov A. Hydrogen Sulfide Releasing 2-Mercaptoacrylic Acid-Based Derivative Possesses Cytoprotective Activity in a Small Intestine of Rats with Medication-Induced Enteropathy. Sci Pharm. 2017; 85(4):35.
[14] Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem. 2014; 85:51-64.
[15] Lozynskyi A, Sabadakh O, Luchkevich E, Taras T, Vynnytska R, Karpenko O, Novikov V, Lesyk R. The application of anthraquinone-based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus Sulfur Silicon Relat Elem. 2018; 193(7):409-14.
[16] Lozynskyi A, Holota S, Yushyn I, Sabadakh O, Karpenko O, Novikov V, Lesyk R. Synthesis and Biological Activity Evaluation of Polyfunctionalized Anthraquinonehydrazones. Lett Drug Des Discov. 2021; 18(2):199-209.
[17] Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-9.
[18] Konechnyi Y, Skurativskyi Y, Tymchuk I, Pidhirnyi Y, Korniychuk O. Microbiological profile of nosocomial infections. Proc Shevchenko Sci Soc Med Sci. 2019; 55(1):56-64.
[19] Shupenyuk VI, Mamykin SV, Taras TN, Matkivskyi MP, Sabadakh OP, Matkivskyi OM. Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate. Phys Chem Solid State. 2020; 21(1):117-23.
[20] Shupeniuk VI, Taras TN, Sabadakh OP, Luchkevich ER, Matkivsky NP. Synthesis of nitrogen-containing heterocyclic compounds based on 9,10-anthraquinone derivatives. J Chem Technol. 2020; 28(2):122-32.
[21] SwissADME. Available online: http://www.swissadme.ch/ (accessed on 27 March 2021)
[22] Wardman P. Bioreductive activation of quinones: redox properties and thiol reactivity. Free Radic Res Commun. 1990; 8(4-6):219-29.
[23] Hook I, Mills C, Sheridan H. Bioactive Naphthoquinones from Higher Plants. Stud Nat Prod Chem. 2014; 41:119-60.
[24] Li WW, Heinze J, Haehnel W. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. J Am Chem Soc. 2005; 127(17):6140-1.
[25] Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020; 12(11):1037-69.
[26] Singh KS, Anand S, Dholpuria S, Sharma JK, Blankenfeldt W, Shouche Y. Antimicrobial resistance dynamics and the one-health strategy: a review. Environ Chem Lett. 2021; 19(4):2995-3007.
[27] Church NA, McKillip JL. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021; 76(5):1535-50.
[28] Agrawal N. Synthetic and therapeutic potential of 4-thiazolidinone and its analogs. Curr Chem Lett. 2021; 10(20):119-38.
[29] Volke DC, Calero P, Nikel PI. Pseudomonas putida. Trends Microbiol. 2020; 28(6):512-3.
[30] Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene blaVIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother. 2021; 76(6):1455-8.
[31] Usta Atmaca H, Akbas F. A Extensively drug-resistant Pseudomonas putida bacteremia that was resolved spontaneously. J Infect Dev Ctries. 2019; 13(6):577-80.
[32] Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus. 2018; 8(1):10.1128/ecosalplus.ESP-0009-2017.
[33] Meto A, Colombari B, Sala A, Pericolini E, Meto A, Peppoloni S, Blasi E. Antimicrobial and antibiofilm efficacy of a copper/calcium hydroxide-based endodontic paste against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Dent Mater J. 2019; 38(4):591-603.
[34] Albuquerque JF, Rocha Filho JA, Brandao SS, Lima MC, Ximenes EA, Galdino SL, Pitta IR, Chantegrel J, Perrissin M, Luu-Duc C. Synthesis and antimicrobial activity of substituted imidazolidinediones and thioxoimidazolidinones. Farmaco. 1999; 54(1-2):77-82.
[35] Ali D, Alarifi S, Chidambaram SK, Radhakrishnan SK, Akbar I. Antimicrobial activity of novel 5-benzylidene-3-(3-phenylallylideneamino)imidazolidine-2,4-dione derivatives causing clinical pathogens: Synthesis and molecular docking studies. J Infect Public Health. 2020; 13(12):1951-60.
[36] Protti ÍF, Rodrigues DR, Fonseca SK, Alves RJ, de Oliveira RB, Maltarollo VG. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021; 16(9):1446-56.