Biopolym. Cell. 2023; 39(1):42-53.
Bioorganic Chemistry
New polyfunctionalized 2-hydrazinoanthraquinone derivatives as potential antimicrobial agents
- Danylo Halytsky Lviv National Medical University
69, Pekarska Str., Lviv, Ukraine, 79010 - Vasyl Stefanyk Precarpathian National University
57, Shevchenko Str., Ivano-Frankivsk, Ukraine, 76018 - Lviv Polytechnic National University
12, Stepan Bandera Str., Lviv, Ukraine, 79013 - University of Information Technology and Management in Rzeszow
2, Sucharskiego Str., Rzeszow, Poland, 35-225
Abstract
Aim. Synthesis and study of new polyfunctionalized 2-hydrazinoanthraquinone derivatives as potential antimicrobial agents. Methods. Organic synthesis, NMR and LC-MS spectroscopy, agar diffusion and broth microdilution methods. Results. A series of anthraquinonehydrazone derivatives are synthesized using the reaction of 2-(morpholinodiazenyl)anthracene-9,10-dione with methylene active compounds in the acetic acid medium. The screening of antimicrobial activity identified the compounds with significant effects against the tested microorganisms with MIC value <186.9 μM. Compounds 5 and 11 with MIC <93.5 μM are effective against yeast fungi whereas compound 5 with MIC <186.9 μM is effective against P.putida, which is multidrug resistant to antibiotics. Conclusions. The obtained hydrazino-anthraquinone derivatives constitute an interesting background for the design of new synthetic agents with antimicrobial activity.
Keywords: anthraquinones, methylene active compounds, 4-thiazolidinones, antimicrobial activity
Full text: (PDF, in English)
References
[1]
Al-Otaibi JS, Teesdale-Spittle P, El Gogary TM. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study. J Mol Struct. 2017; 1127:751-60.
[2]
Balachandran C, Arun Y, Duraipandiyan V, Ignacimuthu S, Balakrishna K, Al-Dhabi NA. Antimicrobial and cytotoxicity properties of 2,3-dihydroxy-9,10-anthraquinone isolated from Streptomyces galbus (ERINLG-127). Appl Biochem Biotechnol. 2014; 172(7):3513-28.
[3]
Stasevych M, Zvarych V, Lunin V, Kopak N, Komarovska-Porokhnyavets O, Deniz NG, Sayil C, Ozyurek M, Guclu K, Vovk M, Novikov V. Synthesis and investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones. Monatsh Chem. 2018; 149(6):1111-9.
[4]
Hietala P, Marvola M, Parviainen T, Lainonen H. Laxative potency and acute toxicity of some anthraquinone derivatives, senna extracts and fractions of senna extracts. Pharmacol Toxicol. 1987; 61(2):153-6.
[5]
Luo H, Wang Y, Qin Q, Wang Y, Xu J, He X. Anti-inflammatory naphthoates and anthraquinones from the roots of Morinda officinalis. Bioorg Chem. 2021; 110:104800.
[6]
Duval J, Pecher V, Poujol M, Lesellier E. Research advances for the extraction, analysis and uses of anthraquinones: A review. Ind Crops Prod. 2016; 94:812-33.
[7]
Asati V, Mahapatra DK, Bharti SK. Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: Potential anticancer agents. Eur J Med Chem. 2014; 87:814-33.
[8]
Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK. 4-Thiazolidinones: the advances continue…. Eur J Med Chem. 2014; 72:52-77.
[9]
Horishny V, Kartsev V, Geronikaki A, Matiychuk V, Petrou A, Glamoclija J, Ciric A, Sokovic M. 5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)alkancarboxylic Acids as Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies. Molecules. 2020; 25(8):1964.
[10]
Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem. 2006; 14(11):3859-64.
[11]
Singh IP, Gupta S, Kumar S. Thiazole Compounds as Antiviral Agents: An Update. Med Chem. 2020; 16(1):4-23.
[12]
Ilkiv II, Lesyk RB, Sklyarov OYa. The influence of novel 4-thiazolidinone derivaties in cytoprotective mechanisms of small intestine under nsaid-induced damage. Ukr Biochem J. 2016; 88(Special Issue):99-104.
[13]
Sklyarova Y, Fomenko I, Lozynska I, Lozynskyi A, Lesyk R, Sklyarov A. Hydrogen Sulfide Releasing 2-Mercaptoacrylic Acid-Based Derivative Possesses Cytoprotective Activity in a Small Intestine of Rats with Medication-Induced Enteropathy. Sci Pharm. 2017; 85(4):35.
[14]
Kryshchyshyn A, Kaminskyy D, Grellier P, Lesyk R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur J Med Chem. 2014; 85:51-64.
[15]
Lozynskyi A, Sabadakh O, Luchkevich E, Taras T, Vynnytska R, Karpenko O, Novikov V, Lesyk R. The application of anthraquinone-based triazenes as equivalents of diazonium salts in reaction with methylene active compounds. Phosphorus Sulfur Silicon Relat Elem. 2018; 193(7):409-14.
[16]
Lozynskyi A, Holota S, Yushyn I, Sabadakh O, Karpenko O, Novikov V, Lesyk R. Synthesis and Biological Activity Evaluation of Polyfunctionalized Anthraquinonehydrazones. Lett Drug Des Discov. 2021; 18(2):199-209.
[17]
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-9.
[18]
Konechnyi Y, Skurativskyi Y, Tymchuk I, Pidhirnyi Y, Korniychuk O. Microbiological profile of nosocomial infections. Proc Shevchenko Sci Soc Med Sci. 2019; 55(1):56-64.
[19]
Shupenyuk VI, Mamykin SV, Taras TN, Matkivskyi MP, Sabadakh OP, Matkivskyi OM. Structure and Morphology of Anthraquinone Triazene Films on Silicon Substrate. Phys Chem Solid State. 2020; 21(1):117-23.
[20]
Shupeniuk VI, Taras TN, Sabadakh OP, Luchkevich ER, Matkivsky NP. Synthesis of nitrogen-containing heterocyclic compounds based on 9,10-anthraquinone derivatives. J Chem Technol. 2020; 28(2):122-32.
[21]
SwissADME. Available online: http://www.swissadme.ch/ (accessed on 27 March 2021)
[22]
Wardman P. Bioreductive activation of quinones: redox properties and thiol reactivity. Free Radic Res Commun. 1990; 8(4-6):219-29.
[23]
Hook I, Mills C, Sheridan H. Bioactive Naphthoquinones from Higher Plants. Stud Nat Prod Chem. 2014; 41:119-60.
[24]
Li WW, Heinze J, Haehnel W. Site-specific binding of quinones to proteins through thiol addition and addition-elimination reactions. J Am Chem Soc. 2005; 127(17):6140-1.
[25]
Siddamurthi S, Gutti G, Jana S, Kumar A, Singh SK. Anthraquinone: a promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med Chem. 2020; 12(11):1037-69.
[26]
Singh KS, Anand S, Dholpuria S, Sharma JK, Blankenfeldt W, Shouche Y. Antimicrobial resistance dynamics and the one-health strategy: a review. Environ Chem Lett. 2021; 19(4):2995-3007.
[27]
Church NA, McKillip JL. Antibiotic resistance crisis: challenges and imperatives. Biologia. 2021; 76(5):1535-50.
[28]
Agrawal N. Synthetic and therapeutic potential of 4-thiazolidinone and its analogs. Curr Chem Lett. 2021; 10(20):119-38.
[30]
Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene blaVIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother. 2021; 76(6):1455-8.
[31]
Usta Atmaca H, Akbas F. A Extensively drug-resistant Pseudomonas putida bacteremia that was resolved spontaneously. J Infect Dev Ctries. 2019; 13(6):577-80.
[32]
Armbruster CE, Mobley HLT, Pearson MM. Pathogenesis of Proteus mirabilis Infection. EcoSal Plus. 2018; 8(1):10.1128/ecosalplus.ESP-0009-2017.
[33]
Meto A, Colombari B, Sala A, Pericolini E, Meto A, Peppoloni S, Blasi E. Antimicrobial and antibiofilm efficacy of a copper/calcium hydroxide-based endodontic paste against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Dent Mater J. 2019; 38(4):591-603.
[34]
Albuquerque JF, Rocha Filho JA, Brandao SS, Lima MC, Ximenes EA, Galdino SL, Pitta IR, Chantegrel J, Perrissin M, Luu-Duc C. Synthesis and antimicrobial activity of substituted imidazolidinediones and thioxoimidazolidinones. Farmaco. 1999; 54(1-2):77-82.
[35]
Ali D, Alarifi S, Chidambaram SK, Radhakrishnan SK, Akbar I. Antimicrobial activity of novel 5-benzylidene-3-(3-phenylallylideneamino)imidazolidine-2,4-dione derivatives causing clinical pathogens: Synthesis and molecular docking studies. J Infect Public Health. 2020; 13(12):1951-60.
[36]
Protti ÍF, Rodrigues DR, Fonseca SK, Alves RJ, de Oliveira RB, Maltarollo VG. Do Drug-likeness Rules Apply to Oral Prodrugs? ChemMedChem. 2021; 16(9):1446-56.