Biopolym. Cell. 2020; 36(5):392-403.
Molecular and Cell Biotechnologies
Comparison of bovine pericardium decellularization protocols for production of biomaterial for cardiac surgery
1Sokol A. A., 1Grekov D. A., 1Yemets G. I., 2Galkin A. Yu., 1Shchotkina N. V., 1Dovghaliuk A. A., 1Telehuzova O. V., 1Rudenko N. M., 1Romaniuk O. M., 1Yemets I. M.
  1. Scientific and Practical Medical Center for Pediatric Cardiology and Cardiosurgery of the Ministry of Health of Ukraine
    24, Yuriia Illienka Str., Kyiv, Ukraine, 04050
  2. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
    37, Pobedy Av., Kyiv, Ukraine, 03056

Abstract

Aim. Determination of the most effective protocol for decellularization of the bovine pericardium. Methods. Bovine pericardium was decellularized following five protocols: group 1 – Ammonium Hydroxide + Triton X-100, group 2 – 1 % SDS + Ammonium Hydroxide – Triton X-100, group 3 – 1 % SDS, group 4 – Trypsin enzyme + 1 % SDS, group 5 – 0,1 % SDS, respectively. Histological, biomechanical properties and detection of nucleic acids concentration in the samples were studied. Results. The decellularization time for groups 1 and 2 is much longer than described in previous scientific publication. Also, the biomechanical properties were lower than in the samples of control group. The lowest results were observed in the samples of group 3. Though in this group we observed the almost complete removal of cells from the tissues, unfortunately, biomechanical properties of pericardium were lost. The samples of group 4 and 5 have high tissue tensile strength, the absence of nucleic acid after 21 days of decellularization. Conclusion. The data of histological, biomechanical and DNA testing showed that the protocols with 0,1 % SDS and Trypsin enzyme + 1 % SDS are optimal for the procedure of decellularization.
Keywords: pericardium, decellularization, tissue engineering

References

[1] Mallis P, Michalopoulos E, Dimitriou C, Kostomitsopoulos N, Stavropoulos-Giokas C. Histological and biomechanical characterization of decellularized porcine pericardium as a potential scaffold for tissue engineering applications. Biomed Mater Eng. 2017;28(5):477-488.
[2] Lima EO, Ferrasi AC, Kaasi A. Decellularization of Human Pericardium with Potential Application in Regenerative Medicine. Arq Bras Cardiol. 2019;113(1):18-19.
[3] Gonçalves AC, Griffiths LG, Anthony RV, Orton EC. Decellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. J Heart Valve Dis. 2005;14(2):212-7.
[4] Williams JK, Miller ES, Lane MR, Atala A, Yoo JJ, Jordan JE. Characterization of CD133 Antibody-Directed Recellularized Heart Valves. J Cardiovasc Transl Res. 2015;8(7):411-20.
[5] Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, Carvalho S, Peleteiro C, Cabral JM, Eberli D, da Silva CL, Baptista PM. Acellular Urethra Bioscaffold: Decellularization of Whole Urethras for Tissue Engineering Applications. Sci Rep. 2017;7:41934.
[6] White LJ, Taylor AJ, Faulk DM, Keane TJ, Saldin LT, Reing JE, Swinehart IT, Turner NJ, Ratner BD, Badylak SF. The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta Biomater. 2017;50:207-219.
[7] Ramm R, Goecke T, Theodoridis K, Hoeffler K, Sarikouch S, Findeisen K, Ciubotaru A, Cebotari S, Tudorache I, Haverich A, Hilfiker A. Decellularization combined with enzymatic removal of N-linked glycans and residual DNA reduces inflammatory response and improves performance of porcine xenogeneic pulmonary heart valves in an ovine in vivo model. Xenotransplantation. 2020;27(2):e12571.
[8] Naso F, Gandaglia A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation. 2018;25(1).
[9] Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, Carabasi RA, Dimuzio PJ. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40(1):146-53.
[10] Simsa R, Padma AM, Heher P, Hellström M, Teuschl A, Jenndahl L, Bergh N, Fogelstrand P. Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS One. 2018;13(12):e0209269.
[11] Jelev L, Surchev L. A novel simple technique for en face endothelial observations using water-soluble media -'thinned-wall' preparations. J Anat. 2008;212(2):192-7.
[12] Amrhein V, Korner-Nievergelt F, Roth T. The earth is flat (p > 0.05): significance thresholds and the crisis of unreplicable research. PeerJ. 2017;5:e3544.
[13] Colquhoun D. The reproducibility of research and the misinterpretation of p-values. R Soc Open Sci. 2017;4(12):171085.
[14] Rippel RA, Ghanbari H, Seifalian AM. Tissue-engineered heart valve: future of cardiac surgery. World J Surg. 2012;36(7):1581-91.
[15] Mirsadraee S, Wilcox HE, Watterson KG, Kearney JN, Hunt J, Fisher J, Ingham E. Biocompatibility of acellular human pericardium. J Surg Res. 2007;143(2):407-14.
[16] Nesteruk I, Pereverzyev S Jr., Mayer L, Steiger R, Kusstatscher L, Fritscher K, Knoflach M, Gizewsk ER. Stenosis detection in internal carotid and vertebral arteries with the use of diameters estimated from MRI data. Innov Biosyst Bioeng. 2020;4(3):131–42.
[17] van Steenberghe M, Schubert T, Guiot Y, Bouzin C, Bollen X, Gianello P. Enhanced vascular biocompatibility of decellularized xeno-/allogeneic matrices in a rodent model. Cell Tissue Bank. 2017;18(2):249-262.
[18] Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S, Khademhosseini A, Baharvand H, Aghdami N. The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials. 2014;35(3):970-82.
[19] Douglas JF, Gaughran ER, Henderson J, Lord GH, Rosenberg N. The use of arterial implants prepared by enzymatic modification of arterial heterografts. II. The physical properties of the elastica and collagen components of the arterial wall. AMA Arch Surg. 1957;74(1):89-95.
[20] Hoch J, Jarrell BE, Schneider T, Williams SK. Endothelial cell interactions with native surfaces. Ann Vasc Surg. 1989;3(2):153-9.
[21] Shang H, Claessens SM, Tian B, Wright GA. Aldehyde reduction in a novel pericardial tissue reduces calcification using rabbit intramuscular model. J Mater Sci Mater Med. 2017;28(1):16.
[22] Huai G, Qi P, Yang H, Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review). Int J Mol Med. 2016;37(1):11-20.
[23] Godier-Furnémont AF, Martens TP, Koeckert MS, Wan L, Parks J, Arai K, Zhang G, Hudson B, Homma S, Vunjak-Novakovic G. Composite scaffold provides a cell delivery platform for cardiovascular repair. Proc Natl Acad Sci U S A. 2011;108(19):7974-9.
[24] Guhathakurta S, Mathapati S, Bishi DK, Rallapalli S, Cherian KM. Nanofiber-reinforced myocardial tissue-construct as ventricular assist device. Asian Cardiovasc Thorac Ann. 2014;22(8):935-43.
[25] Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials. 2008;29(8):1065-74.
[26] Kasimir MT, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G, Simon P. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs. 2003;26(5):421-7.
[27] Herheliuk T, Perepelytsina O, Ostapchenko L, Sydorenko M. Effect of interferon α-2b on multicellular tumor spheroids of MCF-7 cell line enriched with cancer stem cells. Innov Biosyst Bioeng. 2019; 3(1): 34–44.
[28] Lutsenko TN, Kovalenko MV, Galkin OY. Validation of biological activity testing procedure of recombinant human interleukin-7. Ukr Biochem J. 2017;89(1):82-9.