Biopolym. Cell. 2020; 36(5):329-340.
Structure and Function of Biopolymers
Isolation and characterization of the mutant form of N-terminal catalytically module of Bos taurus tyrosyl-tRNA synthetase with the replacement of Trp 40 and Trp 283 by alanine
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143 - Institute of High Technologies,
Taras Shevchenko National University of Kyiv
2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022
Abstract
Aim. To obtain the mutant one-tryptophan form of the N-terminal catalytically module of Bos taurus tyrosyl-tRNA synthetase (mini TyrRS) for the monitoring of the local conformational changes by fluorescence spectroscopy. Methods. Bacterial expression, metal-chelating chromatography, gel electrophoresis, fluorescence spectroscopy, computational modeling. Results. The replacement of two tryptophan codons with alanine codons in cDNA encoding mini BtTyrRS has been performed. These mutations do not affect the synthesis and solubility of the mini BtTyrRS in E. coli BL21 (DE3) pLysE strain. The amount of a soluble form of the mutant mini BtTyrRS in the cytoplasm of bacterial cells at the incubation of bacterial culture at 25 °C was about 47% of the total amount of recombinant protein. The computational modeling and fluorescence study of the single-tryptophan form of mini BtTyrRS revealed that Trp 87 residue was localized at the dimerization region of the enzyme. The characteristics of tryptophan fluorescence of the mutant mini BtTyrRS indicated that Trp 87 is localized in the immobilized microenvironment of the dimer interface. Conclusions. The optimal conditions of bacterial expression of the mutant Trp 87-containing form of mini BtTyrRS in the bacterial culture of E. coli strain BL21 (DE3) pLysE have been established. The Trp 87-containing form of mini BtTyrRS is suitable for monitoring the local conformational changes at the enzyme dimer interface.
Keywords: tyrosyl-tRNA synthetase, mini TyrRS, bacterial expression, fluorescence spectroscopy, computational modeling
Full text: (PDF, in English)
References
[1]
Pang YL, Poruri K, Martinis SA. tRNA synthetase: tRNA aminoacylation and beyond. Wiley Interdiscip Rev RNA. 2014;5(4):461-80.
[2]
Kornelyuk AI. Structural and functional investigation of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1998; 14(4):349–59.
[3]
Korneliuk AI, Kurochkin IV, Matsuka GKh. Tirozil-tRNK-sintetaza iz pecheni byka. Vydelenie i fiziko-khimicheskie svoĭstva [Tyrosyl-tRNA synthetase from the bovine liver. Isolation and physico-chemical properties]. Mol Biol (Mosk). 1988;22(1):176-86. Russian.
[4]
Gnatenko DV, Korneliuk AI, Kurochkin IV, Ribkinska TA, Matsuka GKh. Vydelenie i kharkteristkia funktsional'no aktivnoĭ proteoliticheski modifitsirovannoĭ formy tirozil-tRNK-sintetazy iz pecheni byka [Isolation and characteristics of functionally active proteolytically modified forms of tyrosyl-tRNA synthetase from bovine liver]. Ukr Biokhim Zh (1978). 1991;63(4):61-7. Russian.
[5]
Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999;15(2):168-72.
[6]
Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997;13(6):474-478.
[7]
Wakasugi K, Schimmel P. Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem. 1999;274(33):23155-9.
[8]
Guo M, Schimmel P. Essential nontranslational functions of tRNA synthetases. Nat Chem Biol. 2013;9(3):145-53.
[9]
Kondratyuk Yu, Babarik M, Sidorik L, Kornelyuk O. Optimization of the process of biosynthesis of the catalytic module of mammalian tyrosyl-tRNA synthetase and its research by immunochemical methods. Bull Kyiv Taras Shevchenko Natl Univ, Biol ser. 2010; 56: 33–5.
[10]
Zayets VN, Tsuvarev AYu, Kolomiiets LA, Korneliuk AI. Site-directed mutagenesis of tryptophan residues in the structure of the catalytic module of Tyrosyl-tRNA Synthetase from Bos taurus. Cytol Genet. 2019;53(3):219–26.
[11]
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2008;307(1-2):249-64.
[12]
Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014;5:172.
[13]
Joseph BC, Pichaimuthu S, Srimeenakshi S, Murthy M, Selvakumar K, Ganesan M, Manjunath SR. An overview of the parameters for recombinant protein expression in Escherichia coli. J Cell Sci Ther. 2015; 6(5)
[14]
Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene. 1990;96(1):23-8.
[15]
Sambrook J, Fritsch T, Manniatis T. Molecular Cloning: A Laboratory Manual. 2th ed. New York: “Cold Spring Harbor Laboratory Press”, 1989.
[16]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680-5.
[17]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-12.
[18]
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
[19]
Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011;101(10):2525-34.
[20]
Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 1):12-21.
[21]
Reshetnyak YK, Burstein EA. Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys J. 2001;81(3):1710-34.
[22]
Turoverov KK, Kuznetsova IM. Sobstvennaia fluorestsentsiia globuliarnogo aktina. Osobennosti lokalizatsii triptofanovykh ostatkov [Intrinsic fluorescence of globular actin. Features of localization of tryptophan residues]. Bioorg Khim. 1998;24(12):893-8.
[23]
Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986;189(1):113-30.
[24]
Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif. 2014;94:22-32.
[25]
Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A. 2002;99(24):15369-74.
[26]
Kravchuk VO, Savytskyi OV, Odynets KO, Mykuliak VV, Kornelyuk AI. Computational modeling and molecular dynamics simulations of mammalian cytoplasmic tyrosyl-tRNA synthetase and its complexes with substrates. J Biomol Struct Dyn. 2017;35(13):2772-2788.
[27]
Chysta SV, Kornelyuk AI. Fluorescence and dynamics of the microenvironment of tryptophan residues of eukaryotic tyrosyl-tRNA synthetase. Fizyka Zhyvogo. 2014; 21(1-2):24–8.
[28]
Nangle LA, Zhang W, Xie W, Yang XL, Schimmel P. Charcot-Marie-Tooth disease-associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci U S A. 2007;104(27):11239-44.
[29]
Odynets KA, Kornelyuk AI. Bioinformatical analysis of influence of human tyrosyl-tRNA synthetase mutations associated with neuropathy Charcot-Marie-Tooth, type C, on its local spatial structure properties. Biopolym Cell. 2007;23(5):449–60.