Biopolym. Cell. 2020; 36(2):110-121.
Structure and Function of Biopolymers
Alterations in expression of S6K1 isoforms in MCF7 cells have a strong impact on the locomotor activity as well as on S6K1 and Akt signaling
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
Abstract
Aim. To generate and characterize MCF-7 cell lines with altered expression of p85, p70 and p60 S6K1 isoforms: p85-/p70-/p60-MCF-7 and p85-/p70-/p60+MCF-7. Methods. CRISPR/Cas9 gene editing, western blot analysis, immunofluorescence analysis, scratch assay. Results. Modified MCF-7 cells with knocked down expression of p85, p70, p60 or only p85 and p70 S6K1 isoforms were generated. Selective inhibition of only p85 and p70 isoforms in p85-/p70-/p60+MCF-7 cellswas accompanied by actin cytoskeleton rearrangements, appearance of fibroblast-like cell morphology and significantly increasedcell locomotor activity. Downregulation of all three S6K1 isoforms in p85-/p70-/p60 – MCF-7 cells inhibited cell migration with no changes in the cell morphology. Alterations inhad a different impact on the ribosomal protein S6 phosphorylation and Akt signaling. Conclusion. Analysis of the modified MCF-7 cell lines revealed different impact of expression of S6K1 isoforms on MCF7 cell locomotor activity and the S6K1– and Akt-dependent signaling. Our data suggest that p60-S6K1 could be involved in regulation of the cell migration. The generated cells can be used for furtheranalysis of functionalactivity of the S6K1 isoforms.
Keywords: mTOR/S6K1 signaling, MCF-7, S6K1, CRISPR/Cas9, breast cancer
Full text: (PDF, in English)
References
[1]
Fedorenko Z, Michailovich Y, Goulak L, Gorokh Y, Ryzhov A, Soumkina O, Koutsenko L. Cancer in Ukraine, 2018-2019. Incidence, mortality, activities of oncological service. Bulletin of National Cancer Registry of Ukraine. 2020;21:1-10.
[2]
Takahashi H, Isogawa M. Management of breast cancer brain metastases. Chinese Clinical Oncology. 2018;7(3):30.
[3]
Fruman D, Chiu H, Hopkins B, Bagrodia S, Cantley L, Abraham R. The PI3K pathway in human disease. Cell. 2017;170(4):605-35.
[4]
Filonenko V. PI3K/mTOR/S6K signaling pathway - new players and new functional links. Biopolym Cell. 2013;29(3):207-14.
[5]
Castellvi J, Garcia A, Rojo F, Ruiz-Marcellan C, Gil A, Baselga J, Ramon y Cajal S. Phosphorylated 4E binding protein 1: a hallmark of cell signaling that correlates with survival in ovarian cancer. Cancer. 2006; 107(8):1801-11.
[6]
Filonenko VV, Tytarenko R, Azatjan SK, Savinska LO, Gaydar YA, Gout IT, Usenko VS, Lyzogu-bov VV. Immu-nohistochemical analysis of S6K1 and S6K2 localization in human breast tumors. Exp Oncol. 2004; 26(4):294-9.
[7]
Lyzogubov V, Khozhaenko Y, Usenko V, Antonjuk S, Ovcharenko G, Tikhonkova I, Filonenko V. Immunohisto-chemical analysis of Ki-67, PCNA and S6K1/2 expression in human breast cancer. Exp Oncol. 2005; 27(2):141-4.
[8]
Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP, Kallioniemi A. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst. 2000: 92(15):1252-9.
[9]
van der Hage JA, van den Broek LJ, Legrand C, Clahsen PC, Bosch CJ, Robanus-Maandag EC, van de Velde CJ, van de Vijver MJ. Overexpression of P70 S6 kinase protein is associated with increased risk of locoregional re-currence in node-negative premenopausal early breast cancer patients. Br J Cancer. 2004; 90(8):1543-50.
[10]
Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T, Nordenskjöld B, Stål O. Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat. 2013; 137(2):397-406.
[11]
Bostner J, Karlsson E, Eding CB, Perez-Tenorio G, Franzén H, Konstantinell A, Fornander T, Nordenskjöld B, Stål O. S6 kinase signaling: tamoxifen response and prognostic indication in two breast cancer cohorts. Endocr Relat Cancer. 2015; 22(3):331-43.
[12]
Barlund M, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi O, Kallioniemi A. Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res. 2000; 60(19):5340-4.
[13]
Ismail HM. Overexpression of S6 kinase 1 in brain tumours is associated with induction of hypoxia-responsive genes and predicts patients' survival. J Oncol. 2012; 2012:416927.
[14]
Bostner J, Karlsson E, Pandiyan MJ, Westman H, Skoog L, Fornander T, Nordenskjöld B, Stål O. Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat. 2013; 137(2):397-406.
[15]
Bostner J, Karlsson E, Eding CB, Perez-Tenorio G, Franzén H, Konstantinell A, Fornander T, Nordenskjöld B, Stål O. S6 kinase signaling: tamoxifen response and prognostic indication in two breast cancer cohorts. Endocr Relat Cancer. 2015; 22(3):331-43.
[16]
Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J. mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 2004;24(1):200-16.
[17]
Chiang GG and Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is me-diated by p70S6 Kinase. J. Biol. Chem. 2005;280(27):25485-90.
[18]
Liu L, Cardelli JA, Martin KA, Blenis J, Huang S. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene. 2006;25(53):7029-40.
[19]
Kim D, Akcakanat A, Singh G, Sharma C, Meric-Bernstam F. Regulation and localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors. 2009;27(1):12-21.
[20]
Rosner M, Hengstschläger M. Nucleocytoplasmic localization of p70 S6K1, but not of its isoforms p85 and p31, is regulated by TSC2/mTOR. Oncogene. 2011;30(44):4509-22.
[21]
Zaiets I, Holiar V, Sivchenko A, Smialkovska V, Filonenko V. p60-S6K1 represents a novel kinase active isoform with the mode of regulation distinct from p70/p85-S6K1 isoforms. Ukr. Biochem. J. 2019;91(4):17-25.
[22]
Zaiets I, Sivchenko A, Khoruzhenko A, Filonenko V. Generation of HEK-293 stable cell lines with disrupted ex-pression of ribosomal protein S6 kinase (S6K1) isoforms using the CRISPR/Cas9 genome editing system. Biopolym Cell. 2017;33(5):356-66.
[23]
Zaiets I, Sivchenko A, Khoruzhenko A, Savinska L, Filonenko V. The p60-S6K1 isoform of ribosomal protein S6 kinase 1 is a product of alternative mRNA translation. Ukr Biochem J. 2018;90(4):25-35.
[24]
Zaiets IV, Holiar VV, Sivchenko AS, Smialkovska VV, Filonenko VV. p60-S6K1 represents a novel kinase active isoform with the mode of regulation distinct from p70/p85-S6K1 isoforms. Ukr Biochem J. 2019; 91(4):17-25
[25]
Savinska L, Kijamova R, Pogrebnoy P, Ovcharenko G, Gout I, Filonenko V. Comparative characterization of S6 kinase α and β isoforms expression in mammalian tissues. Biopolym Cell. 2001;17(5):374-9.
[26]
Gotsulyak N, Kosach V, Cherednyk O, Tykhonkova I, Khoruzhenko A. Optimization of cell motility evaluation in scratch assay. Biopolym Cell. 2014;30(3):223-8.
[27]
Comsa S, Cimpean A, Raica M. The Story of MCF‑7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015;35(6):3147-54.
[28]
Berven L, Willard F, Crouch M. Role of the p70(S6K) pathway in regulating the actin cytoskeleton and cell mi-gration. Exp Cell Res. 2004;296(2):183-95.
[29]
Chiang GG and Abraham RT. Phosphorylation of mammalian target of rapamycin (mTOR) at Ser-2448 is me-diated by p70S6 Kinase. J. Biol. Chem. 2005;280(27):25485-90.
[30]
Liu L, Cardelli JA, Martin KA, Blenis J, Huang S. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene. 2006;25(53):7029-40.
[31]
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 168:960-7.