Biopolym. Cell. 2016; 32(5):334-346.
Reviews
Structural and functional significance of microsatellites
1Sjakste T., 1Paramonova N., 2Sjakste N.
  1. Genomics and Bioinformatics, Institute of Biology
    University of Latvia
    3, Miera Str., Salaspils, Latvia, LV-2169
  2. Faculty of Medicine,
    University of Latvia
    19, Raina blvd., Riga, Latvia, LV-1586

Abstract

Here we review literature data on impact of microsatellite repeats on DNA and chromatin structure and the results of studies on association between the length of microsatellite repeats and predisposition to pathologies. The DNA secondary structure is modified in microsatellite sites, the repeats favor formation of Z-DNA, hairpins, triplexes and quadruplexes. The chromatin structure and chromatin loop organization are also modified in microsatellite sites. The data of association studies are classified according to the localization of the microsatellite: in the gene promoter, in exon 1 part coding the signal sequence, in the gene introns, coding areas and 3’-UTRs.
Keywords: microsatellite repeats, chromatin, human diseases, promoter, intron, exon

References

[1] King DG. Evolution of simple sequence repeats as mutable sites. Adv Exp Med Biol. 2012;769:10-25.
[2] Grandi FC, An W. Non-LTR retrotransposons and microsatellites: Partners in genomic variation. Mob Genet Elements. 2013;3(4):e25674.
[3] Gulcher J. Microsatellite markers for linkage and association studies. Cold Spring Harb Protoc. 2012;2012(4):425-32.
[4] Lee DY, McMurray CT. Trinucleotide expansion in disease: why is there a length threshold? Curr Opin Genet Dev. 2014;26:131-40.
[5] Grzeskowiak K, Ohishi H, Ivanov V. Circular dichroism spectra of d(CGCGCGCGCGCG): evidence for intermediate models in the B-to-Z transition. Nucleic Acids Symp Ser (Oxf). 2005;(49):249-50.
[6] Vorlícková M, Kejnovská I, Tumová M, Kypr J. Conformational properties of DNA fragments containing GAC trinucleotide repeats associated with skeletal displasias. Eur Biophys J. 2001;30(3):179-85.
[7] Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with Z-DNA and B-Z-DNA junctions. DNA Cell Biol. 2003;22(3):141-69.
[8] Wang Q, Li L, Wang X, Liu H, Yao X. Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZα(ADAR1)) and various Z-DNAs from molecular dynamics simulation. J Mol Model. 2014;20(11):2500.
[9] Renčiuk D, Kypr J, Vorlíčková M. CGG repeats associated with fragile X chromosome form left-handed Z-DNA structure. Biopolymers. 2011;95(3):174-81.
[10] Latha KS, Anitha S, Rao KS, Viswamitra MA. Molecular understanding of aluminum-induced topological changes in (CCG)12 triplet repeats: relevance to neurological disorders. Biochim Biophys Acta. 2002;1588(1):56-64. Erratum in: Biochim Biophys Acta. 2003 Mar 20;1637(2):182.
[11] Tam M, Erin Montgomery S, Kekis M, Stollar BD, Price GB, Pearson CE. Slipped (CTG).(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies. J Mol Biol. 2003;332(3):585-600.
[12] Wang G, Vasquez KM. Z-DNA, an active element in the genome. Front Biosci. 2007;12:4424-38.
[13] Lo YS, Tseng WH, Chuang CY, Hou MH. The structural basis of actinomycin D-binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats. Nucleic Acids Res. 2013;41(7):4284-94.
[14] Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233-47.
[15] George B, Alam ChM, Kumar RV, Gnanasekaran P, Chakraborty S. Potential linkage between compound microsatellites and recombination in geminiviruses: Evidence from comparative analysis. Virology. 2015;482:41-50.
[16] Qiu Y, Niu H, Vukovic L, Sung P, Myong S. Molecular mechanism of resolving trinucleotide repeat hairpin by helicases. Structure. 2015;23(6):1018-27.
[17] Kejnovská I, Tůmová M, Vorlícková M. (CGA)(4): parallel, anti-parallel, right-handed and left-handed homoduplexes of a trinucleotide repeat DNA. Biochim Biophys Acta. 2001;1527(1-2):73-80.
[18] Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet. 2014;10(4):e1004294.
[19] Asamitsu S, Kawamoto Y, Hashiya F, Hashiya K, Yamamoto M, Kizaki S, Bando T, Sugiyama H. Sequence-specific DNA alkylation and transcriptional inhibition by long-chain hairpin pyrrole-imidazole polyamide-chlorambucil conjugates targeting CAG/CTG trinucleotide repeats. Bioorg Med Chem. 2014;22(17):4646-57.
[20] Sjakste T, Poudžiunas I, Pīrāgs V, Lazdiņš M, Sjakste N. Bioinformatic Analysis of Evolutional Conservatism and Functional Significance of Microsatellite Alleles of Human 14Q13.2 Region Associated with Type 2 Diabetes Mellitus. Proceedings of the Latvian Academy of Sciences. 2008;62(3):91–102.
[21] Tolstonog GV, Mothes E, Shoeman RL, Traub P. Isolation of SDS-stable complexes of the intermediate filament protein vimentin with repetitive, mobile, nuclear matrix attachment region, and mitochondrial DNA sequence elements from cultured mouse and human fibroblasts. DNA Cell Biol. 2001;20(9):531-54.
[22] Van Hecke K, Uytterhoeven K, Van Meervelt L. Exploration of triple-helical fragments: crystallization and preliminary X-ray diffraction of d(TGGCCTTAAGG). Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 1):52-5.
[23] Li G, Tolstonog GV, Traub P. Interaction in vitro of type III intermediate filament proteins with triplex DNA. DNA Cell Biol. 2003;22(3):141–69.
[24] Paris C, Geinguenaud F, Gouyette C, Liquier J, Lacoste J. Mechanism of copper mediated triple helix formation at neutral pH in Drosophila satellite repeats. Biophys J. 2007;92(7):2498-506.
[25] Singh HN, Rajeswari MR. Gene regulation by long purine tracks in brain related diseases. Data Brief. 2015;5:218-25.
[26] Singh HN, Rajeswari MR. Role of long purine stretches in controlling the expression of genes associated with neurological disorders. Gene. 2015;572(2):175-83.
[27] LeProust EM, Pearson CE, Sinden RR, Gao X. Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich's ataxia. J Mol Biol. 2000;302(5):1063-80.
[28] Li YY, Abu-Ghazalah R, Zamiri B, Macgregor RB Jr. Concentration-dependent conformational changes in GQ-forming ODNs. Biophys Chem. 2016;211:70-5.
[29] Koirala D, Ghimire C, Bohrer C, Sannohe Y, Sugiyama H, Mao H. Long-loop G-quadruplexes are misfolded population minorities with fast transition kinetics in human telomeric sequences. J Am Chem Soc. 2013;135(6):2235-41.
[30] Jin SF, Zhao P, Xu LC, Zheng M, Lu JZ, Zhao PL, Su QL, Chen HX, Tang DT, Chen J, Lin JQ. Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins. Bioorg Chem. 2015;60:110-7.
[31] Šket P, Pohleven J, Kovanda A, Štalekar M, Župunski V, Zalar M, Plavec J, Rogelj B. Characterization of DNA G-quadruplex species forming from C9ORF72 G4C2-expanded repeats associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging. 2015;36(2):1091-6.
[32] Zhou B, Liu C, Geng Y, Zhu G. Topology of a G-quadruplex DNA formed by C9orf72 hexanucleotide repeats associated with ALS and FTD. Sci Rep. 2015;5:16673.
[33] Vatovec S, Kovanda A, Rogelj B. Unconventional features of C9ORF72 expanded repeat in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Neurobiol Aging. 2014;35(10):2421.e1-2421.e12.
[34] Chen YW, Jhan CR, Neidle S, Hou MH. Structural basis for the identification of an i-motif tetraplex core with a parallel-duplex junction as a structural motif in CCG triplet repeats. Angew Chem Int Ed Engl. 2014;53(40):10682-6.
[35] Lexa M, Kejnovský E, Steflová P, Konvalinová H, Vorlícková M, Vyskot B. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons. Nucleic Acids Res. 2014;42(2):968-78.
[36] Phan AT, Modi YS, Patel DJ. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc. 2004;126(28):8710-6.
[37] Wu Y, Brosh RM Jr. G-quadruplex nucleic acids and human disease. FEBS J. 2010;277(17):3470-88.
[38] Tolstonog GV, Li G, Shoeman RL, Traub P. Interaction in vitro of type III intermediate filament proteins with higher order structures of single-stranded DNA, particularly with G-quadruplex DNA. DNA Cell Biol. 2005;24(2):85-110.
[39] Dion V, Wilson JH. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet. 2009;25(7):288-97.
[40] Iyer RR, Pluciennik A, Napierala M, Wells RD. DNA triplet repeat expansion and mismatch repair. Annu Rev Biochem. 2015;84:199-226.
[41] Chutake YK, Costello WN, Lam C, Bidichandani SI. Altered nucleosome positioning at the transcription start site and deficient transcriptional initiation in Friedreich ataxia. J Biol Chem. 2014;289(22):15194-202.
[42] Zhao H, Xing Y, Liu G, Chen P, Zhao X, Li G, Cai L. GAA triplet-repeats cause nucleosome depletion in the human genome. Genomics. 2015;106(2):88-95.
[43] Ruan H, Wang YH. Friedreich's ataxia GAA.TTC duplex and GAA.GAA.TTC triplex structures exclude nucleosome assembly. J Mol Biol. 2008;383(2):292-300.
[44] Volle CB, Delaney S. CAG/CTG repeats alter the affinity for the histone core and the positioning of DNA in the nucleosome. Biochemistry. 2012;51(49):9814-25.
[45] Arope S, Harraghy N, Pjanic M, Mermod N. Molecular characterization of a human matrix attachment region epigenetic regulator. PLoS One. 2013;8(11):e79262.
[46] Boulikas T. Nature of DNA sequences at the attachment regions of genes to the nuclear matrix. J Cell Biochem. 1993;52(1):14-22.
[47] Lenartowski R, Goc A. Tissue-specific association of the human tyrosine hydroxylase gene with the nuclear matrix. Neurosci Lett. 2002;330(2):151-4.
[48] Silva AM, Brown JM, Buckle VJ, Wade-Martins R, Lufino MM. Expanded GAA repeats impair FXN gene expression and reposition the FXN locus to the nuclear lamina in single cells. Hum Mol Genet. 2015;24(12):3457-71.
[49] Petrov A, Pirozhkova I, Carnac G, Laoudj D, Lipinski M, Vassetzky YS. Chromatin loop domain organization within the 4q35 locus in facioscapulohumeral dystrophy patients versus normal human myoblasts. Proc Natl Acad Sci U S A. 2006;103(18):6982-7.
[50] Kisseljova NP, Dmitriev P, Katargin A, Kim E, Ezerina D, Markozashvili D, Malysheva D, Planche E, Lemmers RJ, van der Maarel SM, Laoudj-Chenivesse D, Lipinski M, Vassetzky YS. DNA polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix attachment region to the nuclear matrix. Eur J Hum Genet. 2014;22(9):1117-23.
[51] Zheng R, Shen Z, Tripathi V, Xuan Z, Freier SM, Bennett CF, Prasanth SG, Prasanth KV. Polypurine-repeat-containing RNAs: a novel class of long non-coding RNA in mammalian cells. J Cell Sci. 2010;123(Pt 21):3734-44.
[52] Filippova GN, Thienes CP, Penn BH, Cho DH, Hu YJ, Moore JM, Klesert TR, Lobanenkov VV, Tapscott SJ. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet. 2001;28(4):335-43.
[53] Rothenburg S, Koch-Nolte F, Haag F. DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol Rev. 2001;184:286-98.
[54] Bassuny WM, Ihara K, Sasaki Y, Kuromaru R, Kohno H, Matsuura N, Hara T. A functional polymorphism in the promoter/enhancer region of the FOXP3/Scurfin gene associated with type 1 diabetes. Immunogenetics. 2003;55(3):149-56.
[55] Kumar RP, Krishnan J, Pratap Singh N, Singh L, Mishra RK. GATA simple sequence repeats function as enhancer blocker boundaries. Nat Commun. 2013;4:1844.
[56] Nelson DL, Orr HT, Warren ST. The unstable repeats--three evolving faces of neurological disease. Neuron. 2013;77(5):825-43.
[57] Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89(6):899-921.
[58] Heidari A, Nariman Saleh Fam Z, Esmaeilzadeh-Gharehdaghi E, Banan M, Hosseinkhani S, Mohammadparast S, Oladnabi M, Ebrahimpour MR, Soosanabadi M, Farokhashtiani T, Darvish H, Firouzabadi SG, Farashi S, Najmabadi H, Ohadi M. Core promoter STRs: novel mechanism for inter-individual variation in gene expression in humans. Gene. 2012;492(1):195-8.
[59] Valipour E, Kowsari A, Bayat H, Banan M, Kazeminasab S, Mohammadparast S, Ohadi M. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes. Gene. 2013;531(2):175-9.
[60] Chen YS, Racca JD, Sequeira PW, Phillips NB, Weiss MA. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty. Proc Natl Acad Sci U S A. 2013;110(33):E3061-70.
[61] Sawaya SM, Bagshaw AT, Buschiazzo E, Gemmell NJ. Promoter microsatellites as modulators of human gene expression. Adv Exp Med Biol. 2012;769:41-54.
[62] Sawaya SM, Lennon D, Buschiazzo E, Gemmell N, Minin VN. Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model. Genome Biol Evol. 2012;4(6):636-47.
[63] Taka S, Gazouli M, Politis PK, Pappa KI, Anagnou NP. Transcription factor ATF-3 regulates allele variation phenotypes of the human SLC11A1 gene. Mol Biol Rep. 2013;40(3):2263-71.
[64] García SI, Porto PI, Dieuzeide G, Landa MS, Kirszner T, Plotquin Y, Gonzalez C, Pirola CJ. Thyrotropin-releasing hormone receptor (TRHR) gene is associated with essential hypertension. Hypertension. 2001;38(3 Pt 2):683-7.
[65] Bayele HK, Peyssonnaux C, Giatromanolaki A, Arrais-Silva WW, Mohamed HS, Collins H, Giorgio S, Koukourakis M, Johnson RS, Blackwell JM, Nizet V, Srai SK. HIF-1 regulates heritable variation and allele expression phenotypes of the macrophage immune response gene SLC11A1 from a Z-DNA forming microsatellite. Blood. 2007;110(8):3039-48.
[66] Johnson MP, Lea RA, Colson NJ, Macmillan JC, Griffiths LR. A population genomics overview of the neuronal nitric oxide synthase (nNOS) gene and its relationship to migraine susceptibility. Cell Mol Biol (Noisy-le-grand). 2005;51(3):285-92.
[67] Rothenburg S, Koch-Nolte F, Rich A, Haag F. A polymorphic dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits promoter activity. Proc Natl Acad Sci U S A. 2001;98(16):8985-90.
[68] Tanaka G, Matsushita I, Ohashi J, Tsuchiya N, Ikushima S, Oritsu M, Hijikata M, Nagata T, Yamamoto K, Tokunaga K, Keicho N. Evaluation of microsatellite markers in association studies: a search for an immune-related susceptibility gene in sarcoidosis. Immunogenetics. 2005;56(12):861-70.
[69] Rockman MV, Wray GA. Abundant raw material for cis-regulatory evolution in humans. Mol Biol Evol. 2002;19(11):1991-2004.
[70] Chen HY, Huang W, Leung VH, Fung SL, Ma SL, Jiang H, Tang NL. Functional interaction between SNPs and microsatellite in the transcriptional regulation of insulin-like growth factor 1. Hum Mutat. 2013;34(9):1289-97.
[71] Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One. 2013;8(2):e54710.
[72] Li Y, Seidel K, Marschall P, Klein M, Hope A, Schacherl J, Schmitz J, Menk M, Schefe JH, Reinemund J, Hugel R, Walden P, Schlosser A, Volkmer R, Schimkus J, Kölsch H, Maier W, Kornhuber J, Frölich L, Klare S, Kirsch S, Schmerbach K, Scheele S, Grittner U, Zollmann F, Goldin-Lang P, Peters O, Kintscher U, Unger T, Funke-Kaiser H. A polymorphic microsatellite repeat within the ECE-1c promoter is involved in transcriptional start site determination, human evolution, and Alzheimer's disease. J Neurosci. 2012;32(47):16807-20.
[73] Hu YF, Lee KT, Wang HH, Ueng KC, Yeh HI, Chao TF, Liao JN, Lin YJ, Chang SL, Lo LW, Tuan TC, Li CH, Chung FP, Hsu CP, Chang HH, Huang CH, Chen SA. The association between heme oxygenase-1 gene promoter polymorphism and the outcomes of catheter ablation of atrial fibrillation. PLoS One. 2013;8(2):e56440.
[74] Wu ML, Ho YC, Yet SF. A central role of heme oxygenase-1 in cardiovascular protection. Antioxid Redox Signal. 2011;15(7):1835-46.
[75] Bao W, Song F, Li X, Rong S, Yang W, Wang D, Xu J, Fu J, Zhao Y, Liu L. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010;172(6):631-6.
[76] Song F, Li X, Zhang M, Yao P, Yang N, Sun X, Hu FB, Liu L. Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes in a Chinese population. Am J Epidemiol. 2009;170(6):747-56.
[77] Chen YH, Hung SC, Tarng DC. Length polymorphism in heme oxygenase-1 and cardiovascular events and mortality in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8(10):1756-63.
[78] Gregorek AC, Gornik KC, Polancec DS, Dabelic S. GT microsatellite repeats in the heme oxygenase-1 gene promoter associated with abdominal aortic aneurysm in Croatian patients. Biochem Genet. 2013;51(5-6):482-92.
[79] Mendonça VR, Luz NF, Santos NJ, Borges VM, Gonçalves MS, Andrade BB, Barral-Netto M. Association between the haptoglobin and heme oxygenase 1 genetic profiles and soluble CD163 in susceptibility to and severity of human malaria. Infect Immun. 2012;80(4):1445-54.
[80] Abhary S, Hewitt AW, Burdon KP, Craig JE. A systematic meta-analysis of genetic association studies for diabetic retinopathy. Diabetes. 2009;58(9):2137-47.
[81] Uthra S, Raman R, Mukesh BN, Rajkumar SA, Kumari P, Lakshmipathy P, Gnanamoorthy P, Sharma T, McCarty CA, Kumaramanickavel G. Diabetic retinopathy: Validation study of ALR2, RAGE, iNOS and TNFB gene variants in a south Indian cohort. Ophthalmic Genet. 2010;31(4):244-51.
[82] Oliveira-Paula GH, Lacchini R, Coeli-Lacchini FB, Junior HM, Tanus-Santos JE. Inducible nitric oxide synthase haplotype associated with hypertension and responsiveness to antihypertensive drug therapy. Gene. 2013;515(2):391-5.
[83] Pinsonneault JK, Sullivan D, Sadee W, Soares CN, Hampson E, Steiner M. Association study of the estrogen receptor gene ESR1 with postpartum depression--a pilot study. Arch Womens Ment Health. 2013;16(6):499-509.
[84] Tansey KE, Hill MJ, Cochrane LE, Gill M, Anney RJ, Gallagher L. Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Mol Autism. 2011;2(1):3.
[85] Shen W, Li T, Hu Y, Liu H, Song M. Common polymorphisms in the CYP1A1 and CYP11A1 genes and polycystic ovary syndrome risk: a meta-analysis and meta-regression. Arch Gynecol Obstet. 2014;289(1):107-18.
[86] Ray BK, Dhar S, Shakya A, Ray A. Z-DNA-forming silencer in the first exon regulates human ADAM-12 gene expression. Proc Natl Acad Sci U S A. 2011;108(1):103-8.
[87] Zhu JM, Wang B, Li J, Chen GM, Fan YG, Feng CC, Pan HF, Ye DQ. D18S880 microsatellite polymorphism of carnosinase gene and diabetic nephropathy: a meta-analysis. Genet Test Mol Biomarkers. 2013;17(4):289-94.
[88] Duetsch G, Illig T, Loesgen S, Rohde K, Klopp N, Herbon N, Gohlke H, Altmueller J, Wjst M. STAT6 as an asthma candidate gene: polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum Mol Genet. 2002;11(6):613-21.
[89] Tamura K, Suzuki M, Arakawa H, Tokuyama K, Morikawa A. Linkage and association studies of STAT6 gene polymorphisms and allergic diseases. Int Arch Allergy Immunol. 2003;131(1):33-8.
[90] Gambelunghe G, Falorni A, Ghaderi M, Laureti S, Tortoioli C, Santeusanio F, Brunetti P, Sanjeevi CB. Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J Clin Endocrinol Metab. 1999;84(10):3701-7.
[91] Kumar N, Sharma G, Kaur G, Tandon N, Bhatnagar S, Mehra N. Major histocompatibility complex class I chain related gene-A microsatellite polymorphism shows secondary association with type 1 diabetes and celiac disease in North Indians. Tissue Antigens. 2012;80(4):356-62.
[92] Novota P, Kolostova K, Pinterova D, Novak J, Weber P, Treslova L, Kovar J, Andel M, Cerna M. Association of MHC class I chain related gene-A microsatellite polymorphism with the susceptibility to T1DM and LADA in Czech adult patients. Int J Immunogenet. 2005;32(5):273-5.
[93] Bilbao JR, Martín-Pagola A, Calvo B, Perez de Nanclares G, Gepv-N, Castaño L. Contribution of MIC-A polymorphism to type 1 diabetes mellitus in Basques. Ann N Y Acad Sci. 2002;958:321-4.
[94] Nikitina Zake L, Cimdina I, Rumba I, Dabadghao P, Sanjeevi CB. Major histocompatibility complex class I chain related (MIC) A gene, TNFa microsatellite alleles and TNFB alleles in juvenile idiopathic arthritis patients from Latvia. Hum Immunol. 2002;63(5):418-23.
[95] Stanworth RD, Kapoor D, Channer KS, Jones TH. Dyslipidaemia is associated with testosterone, oestradiol and androgen receptor CAG repeat polymorphism in men with type 2 diabetes. Clin Endocrinol (Oxf). 2011;74(5):624-30.
[96] Bidichandani SI, Ashizawa T, Patel PI. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998;62(1):111-21.
[97] Mäueler W, Bassili G, Arnold R, Renkawitz R, Epplen JT. The (gt)n(ga)m containing intron 2 of HLA-DRB alleles binds a zinc-dependent protein and forms non B-DNA structures. Gene. 1999;226(1):9-23.
[98] Motallebipour M, Rada-Iglesias A, Westin G, Wadelius C. Two polypyrimidine tracts in the nitric oxide synthase 2 gene: similar regulatory sequences with different properties. Mol Biol Rep. 2010;37(4):2021-30.
[99] Jemaa R, Ben Ali S, Kallel A, Feki M, Elasmi M, Taieb SH, Sanhaji H, Omar S, Kaabachi N. Association of a 27-bp repeat polymorphism in intron 4 of endothelial constitutive nitric oxide synthase gene with hypertension in a Tunisian population. Clin Biochem. 2009;42(9):852-6.
[100] Mune T, Suwa T, Morita H, Isomura Y, Takada N, Yamamoto Y, Hayashi M, Yamakita N, Sasaki A, Takeda N, Takeda J, White PC, Kaku K. Longer HSD11B2 CA-repeat in impaired glucose tolerance and type 2 diabetes. Endocr J. 2013;60(5):671-8.
[101] Cao F, Zhang H, Feng J, Gao C, Li S. Association study of three microsatellite polymorphisms located in introns 1, 8, and 9 of DISC1 with schizophrenia in the Chinese Han population. Genet Test Mol Biomarkers. 2013;17(5):407-11.
[102] Akagi T, Yin D, Kawamata N, Bartram CR, Hofmann WK, Song JH, Miller CW, den Boer ML, Koeffler HP. Functional analysis of a novel DNA polymorphism of a tandem repeated sequence in the asparagine synthetase gene in acute lymphoblastic leukemia cells. Leuk Res. 2009;33(7):991-6.
[103] Zakieh A, Simin H, Forousan S, Manoochehr T. Polymorphic CT dinucleotide repeat in the GATA3 gene and risk of breast cancer in Iranian women. Med Oncol. 2013;30(2):504.
[104] Zheng Y, Huo D, Zhang J, Yoshimatsu TF, Niu Q, Olopade OI. Microsatellites in the estrogen receptor (ESR1, ESR2) and androgen receptor (AR) genes and breast cancer risk in African American and Nigerian women. PLoS One. 2012;7(7):e40494.
[105] Xie GB, Xu P, Che YN, Xia YJ, Cao YX, Wang WJ, Qiao D, Wu XK, Yi L, Gao Q, Wang Y. Microsatellite polymorphism in the fibrillin 3 gene and susceptibility to PCOS: a case-control study and meta-analysis. Reprod Biomed Online. 2013;26(2):168-74.
[106] Belguith-Maalej S, Kallel R, Mnif M, Abid M, Ayadi H, Kacem HH. Association of intronic repetition of SLC26A4 gene with Hashimoto thyroiditis disease. Genet Res (Camb). 2013;95(1):38-44.
[107] Silva GA, Santos MP, Mota-Passos I, Boechat AL, Malheiro A, Naveca FG, de Paula L. IFN-γ +875 microsatellite polymorphism as a potential protection marker for leprosy patients from Amazonas state, Brazil. Cytokine. 2012;60(2):493-7.
[108] Hijikata M, Shojima J, Matsushita I, Tokunaga K, Ohashi J, Hang NT, Horie T, Sakurada S, Hoang NP, Thuong PH, Lien LT, Keicho N. Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese. Hum Genet. 2012;131(5):675-82.
[109] Mendonça MS, Peraçolli TS, Silva-Vergara ML, Ribeiro SC, Oliveira RF, Mendes RP, Rodrigues V Jr. High interleukin-4 expression and interleukin-4 gene polymorphisms are associated with susceptibility to human paracoccidioidomycosis. Mem Inst Oswaldo Cruz. 2015;110(6):781-5.
[110] Rodriguez-Fontenla C, Carr A, Gomez-Reino JJ, Tsezou A, Loughlin J, Gonzalez A. Association of a BMP5 microsatellite with knee osteoarthritis: case-control study. Arthritis Res Ther. 2012;14(6):R257.
[111] Sjakste T, Eglite J, Sochnevs A, Marga M, Pirags V, Collan Y, Sjakste N. Microsatellite genotyping of chromosome 14q13.2-14q13 in the vicinity of proteasomal gene PSMA6 and association with Graves' disease in the Latvian population. Immunogenetics. 2004;56(4):238-43.
[112] Sjakste T, Kalis M, Poudziunas I, Pirags V, Lazdins M, Groop L, Sjakste N. Association of microsatellite polymorphisms of the human 14q13.2 region with type 2 diabetes mellitus in Latvian and Finnish populations. Ann Hum Genet. 2007;71(Pt 6):772-6.
[113] Sjakste T, Trapina I, Rumba-Rozenfelde I, Lunin R, Sugoka O, Sjakste N. Identification of a novel candidate locus for juvenile idiopathic arthritis at 14q13.2 in the Latvian population by association analysis with microsatellite markers. DNA Cell Biol. 2010;29(9):543-51.
[114] Michalova E, Vojtesek B, Hrstka R. Impaired pre-mRNA processing and altered architecture of 3' untranslated regions contribute to the development of human disorders. Int J Mol Sci. 2013;14(8):15681-94.
[115] Akhter Q, Masood A, Ashraf R, Majid S, Rasool S, Khan T, Rashid T, Sameer AS, Ganai BA. Polymorphisms in the 3'UTR of the human leptin gene and their role in hypertension. Mol Med Rep. 2012;5(4):1058-62.
[116] Kersting C, Agelopoulos K, Schmidt H, Korsching E, August C, Gosheger G, Dirksen U, Juergens H, Winkelmann W, Brandt B, Bielack S, Buerger H, Gebert C. Biological importance of a polymorphic CA sequence within intron 1 of the epidermal growth factor receptor gene (EGFR) in high grade central osteosarcomas. Genes Chromosomes Cancer. 2008;47(8):657-64.
[117] Gupta R, Prakash S, Parveen F, Agrawal S. Association of CTLA-4 and TNF-α polymorphism with recurrent miscarriage among North Indian women. Cytokine. 2012;60(2):456-62.
[118] Ben Mustapha M, Moumni I, Zorai A, Douzi K, Ghanem A, Abbes S. Microsatellite and single nucleotide polymorphisms in the β-globin locus control region-hypersensitive Site 2: SPECIFICITY of Tunisian βs chromosomes. Hemoglobin. 2012;36(6):533-44.
[119] José-Edwards DS, Oda-Ishii I, Kugler JE, Passamaneck YJ, Katikala L, Nibu Y, Di Gregorio A. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet. 2015;11(12):e1005730.
[120] Raje M, Botre C, Ashma R. Genetic epidemiology of osteoporosis across four microsatellite markers near the VDR gene. Int J Mol Epidemiol Genet. 2013;4(2):101-8.
[121] Zeegers MP, Nekeman D, Khan HS, van Dijk BA, Goldbohm RA, Schalken J, Shajahan S, Pearlman A, Oddoux C, van den Brandt PA, Schouten LJ, Ostrer H. Prostate cancer susceptibility genes on 8p21-23 in a Dutch population. Prostate Cancer Prostatic Dis. 2013;16(3):248-53.
[122] Ota M, Ito T, Umemura T, Katsuyama Y, Yoshizawa K, Hamano H, Kawa S. Polymorphism in the KCNA3 gene is associated with susceptibility to autoimmune pancreatitis in the Japanese population. Dis Markers. 2011;31(4):223-9.