Biopolym. Cell. 2016; 32(2):83-97.
Reviews
Chitosan-apatite composites: synthesis and properties
- Sumy State University
2, Rymskogo-Korsakova., Sumy, Ukraine, 40007 - Mechnikov Institute of Microbiology and Immunology, NAMS of Ukraine
14, Pushkinska Str., Kharkiv, Ukraine, 61057
Abstract
The aim of this short review was to discuss applications of a unique biopolymer chitosan in practical medicine, especially for bone tissue engineering. The article highlights the preparation and properties of innovative chitosan-based biomaterials such as CaP-chitosan (CS-CP)-composites and chitosan-alginate (CS-AG)-scaffolds. This paper takes a closer look at the physicochemical properties, spectral characteristics and chemical modifications of the chitosan molecule. The obtained chitosan-apatite composites were analysed using X-ray diffraction to verify the crystalline nature of their structures. It was observed that the addition of chitosan to the composite material reduces apatite crystallinity. Besides, an accent was made on antibacterial properties of chitosan, the use of chitosan nanoparticles to produce nanofibers and controlled drug delivery systems.
Keywords: chitosan, hydroxyapatite, biocomposites, X-ray diffraction
Keywords: chitosan, hydroxyapatite, biocomposites, X-ray diffraction
Full text: (PDF, in English)
References
[1]
Jamalpoor Z. Chitosan: a brief review on structure and tissue engineering application. J Appl Tissue Eng. 2014;1(1):3–7.
[2]
Croisier F, Jerome C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49(4):780–92.
[3]
Nikitenko P, Khrustitskaya L. Chitosan – a polymer of the future. The Science and Innovations. 2013;127(9):14–7.
[4]
Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan – a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci. 2011;36(8):981–1014.
[5]
Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983-90.
[6]
Mao JS, Cui YL, Wang XH, Sun Y, Yin YJ, Zhao HM, De Yao K. A preliminary study on chitosan and gelatin polyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis. Biomaterials. 2004;25(18):3973-81.
[7]
Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials. A short review. Carbohydr Polym. 2010;82(2):227–32.
[8]
Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering--an overview. Mar Drugs. 2010;8(8):2252-66.
[9]
Dodane V, Vilivalam VD. Pharmaceutical applications of chitosan. Pharm Sci Technol Today. 1998;1(6):246–53.
[10]
Xie Y, Zhou NJ, Gong YF, Zhou XJ, Chen J, Hu SJ, Lu NH, Hou XH. Th immune response induced by H pylori vaccine with chitosan as adjuvant and its relation to immune protection. World J Gastroenterol. 2007;13(10):1547-53.
[11]
Dorozhkin SV. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009;2(4):1975–2045.
[12]
Gomez L, Ramirez HL, Neira-Carrillo A, Villalonga R. Polyelectrolyte complex formation mediated immobilization of chitosan-invertase neoglycoconjugate on pectin-coated chitin. Bioprocess Biosyst Eng. 2006;28(6):387–95.
[13]
Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering. Biomaterials. 1999;20(12):1133-42.
[14]
Pavinatto FJ, Caseli L, Oliveira ON. Chitosan in nanostructured thin films. Biomacromolecules. 2010;11(8):1897-908.
[15]
Takahashi T, Takayama K, Machida Y, Nagai T. Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm. 1990;61(1-2):35–41.
[16]
Kim T-H, Jiang H-L, Jere D, Park I-K, Cho M-H, Nah J-W, Choi Y-J, Akaike T, Cho C-S. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci. 2007;32(7):726–53.
[17]
Varum KM, Ottøy MH, Smidsrod O. Water-solubility of partially N-acetylated chitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohydr Polym. 1994;25(2):65–70.
[18]
Anthonsen MW, Smidsrod O. Hydrogen ion titration of chitosans with varying degrees of N-acetylation by monitoring induced 1H-NMR chemical shifts. Carbohydr Polym. 1995; 26(4):303–5.
[19]
Payne GF, Raghavan SR. Chitosan: a soft interconnect for hierarchical assembly of nano-scale components. Soft Matter. 2007;3(5):521–7.
[20]
Krajewska B. Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol. 2004;35(2–3):126–39.
[21]
Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38(1):43–74.
[22]
Chen AH, Yang CY, Chen CY, Chen CY, Chen CW. The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J Hazard Mater. 2009;163(2-3):1068-75.
[23]
Kong M, Chen XG, Liu CS, Liu CG, Meng XH, Yu le J. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids Surf B Biointerfaces. 2008;65(2):197-202.
[24]
Chung YC, Chen CY. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol. 2008;99(8):2806-14.
[25]
Raafat D, von Bargen K, Haas A, Sahl HG. Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol. 2008;74(12):3764-73.
[26]
Seol Y-J, Lee J-Y, Park Y-J, Lee Y-M, Young-Ku, Rhyu I-C, Lee SJ, Han S-B, Chung C-P. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett. 2004;26(13):1037–41.
[27]
Seeherman H, Li R, Wozney J. A review of preclinical program development for evaluating injectable carriers for osteogenic factors. J Bone Joint Surg Am. 2003;85-A Suppl 3:96-108.
[28]
Zhang Y, Zhang M. Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res. 2001;55(3):304-12.
[29]
Zhang Y, Zhang M. Calcium phosphate/chitosan composite scaffolds for controlled in vitro antibiotic drug release. J Biomed Mater Res. 2002;62(3):378-86.
[30]
Lian Q, Li D, Jin Z, Wang J, Li A, Wang Z, Jin Z. Fabrication and in vitro evaluation of calcium phosphate combined with chitosan fibers for scaffold structures. J Bioactive Comp Polym. 2009;24(1):113–24.
[31]
Sukhodub LF, Yanovska GO, Sukhodub LB, Kuznetsov VM, Stanislavov OS. Nanocomposite apatite-biopolymer materials and coatings for biomedical applications. J Nano- Electron Phys. 2014;6(1):id01001.
[32]
Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2010;47(1):1-4.
[33]
Zhang Y, Zhang M. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res. 2002;61(1):1-8.
[34]
Zhang Y, Ni M, Zhang M, Ratner B. Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng. 2003;9(2):337-45.
[35]
Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25(17):3829-35.
[36]
Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater. 2011;7(1):16-30.
[37]
Klug HP, Alexander LE. X-Ray Diffraction procedures: for polycrystalline and amorphous materials. New York: Wiley, 1974. 992 p.
[38]
Malesu VK, Sahoo D, Nayak PL. Chitosan–sodium alginate nanocomposites blended with cloisite 30b as a novel drug delivery system for anticancer drug curcumin. Int J Appl Biol Pharm. 2011;2(3):402–11.
[39]
Li B, Wang Y, Jia D, Zhou Y. Gradient structural bone-like apatite induced by chitosan hydrogel via ion assembly. J Biomater Sci Polym Ed. 2011;22(4-6):505-17.
[40]
Amaral IF, Granja PL, Barbosa MA. Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed. 2005;16(12):1575-93.
[41]
Roeges NPG. A Guide to the complete interpretation of infrared spectra of organic structures. Wiley: Chichester, 1994. 340 p.
[42]
Tarasevich BN. IR spectra of major classes of organic compounds. Moscow: Lomonosov Moscow State University, 2012. 54 p.
[43]
Manjubala I, Scheler S, Bössert J, Jandt KD. Mineralisation of chitosan scaffolds with nano-apatite formation by double diffusion technique. Acta Biomater. 2006;2(1):75-84.
[44]
Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J Mater Sci Mater Med. 1997;8(1):1-4.
[45]
Nayar S, Sinha A. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite. Colloids Surf B Biointerfaces. 2004;35(1):29-32.
[46]
Han J, Zhou Z, Yin R, Yang D, Nie J. Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: preparation and characterization. Int J Biol Macromol. 2010;46(2):199-205.
[47]
Boddohi S, Moore N, Johnson PA, Kipper MJ. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules. 2009;10(6):1402-9.
[48]
Ilina AV, Varlamov VP. Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol. 2005;41(1):5–11.
[49]
Denuziere A, Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials. 1998;19(14):1275-85.
[50]
Yin YJ, Yao KD, Cheng GX, Ma JB. Properties of polyelectrolyte complex films of chitosan and gelatin. Polym Int. 1999;48(6):429–32.
[51]
Jiang T, Zhang Z, Zhou Y, Liu Y, Wang Z, Tong H, Shen X, Wang Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: characterization and cell behavior. Biomacromolecules. 2010;11(5):1254-60.
[52]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83-99.
[53]
Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-51.
[55]
Danilchenko SN, Kalinkevich OV, Kuznetsov VN, Kalinkevich AN, Kalinichenko TG, Poddubny IN, Starikov VV, Sklyar AM, Sukhodub LF. Thermal transformations of the mineral component of composite biomaterials based on chitosan and apatite. Crystal Res Technol. 2010;45(7):685–91.
[56]
Kuznetsov VM, Sukhodub LB, Sukhodub LF. Structural and substructural features of apatite-biopolymer composites: the comparison of data obtained using X-ray diffraction and scanning electron microscopy with electron diffraction. J Nano- Electron Phys. 2014;6(4):id04039.
[57]
Je JY, Kim SK. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem. 2006;54(18):6629-33.
[58]
Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004;95(2):147-55.
[59]
Moussa SH, Tayel AA, Al-Turki AI. Evaluation of fungal chitosan as a biocontrol and antibacterial agent using fluorescence-labeling. Int J Biol Macromol. 2013;54:204–8.
[60]
Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004;25(7):932-6.
[61]
Thomas V, Yallapu M, Mohan SB, Bajpai SK. Fabrication, characterization of chitosan. nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed. 2009;20(14):2129–44.
[62]
Kumar R, Münstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials. 2005;26(14):2081-8.
[63]
Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25(18):4383-91.
[64]
Han IH, Lee IS, Song JH, Lee MH, Park JC, Lee GH, Sun XD, Chung SM. Characterization of a silver-incorporated calcium phosphate film by RBS and its antimicrobial effects. Biomed Mater. 2007;2(3):S91-4.
[65]
Diaz M, Barba F, Miranda M, Guiti F, Torrecillas R, Moya JS. Synthesis and Antimicrobial Activity of a Silver-Hydroxyapatite Nanocomposite. J Nanomater. 2009;2009:id498505.
[66]
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76-83.
[67]
Bragg PD, Rainnie DJ. The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol. 1974;20(6):883-9.
[68]
Yanovska AA, Stanislavov AS, Sukhodub LB, Kuznetsov VN, Illiashenko VYu, Danilchenko SN, Sukhodub LF. Silver-doped hydroxyapatite coatings formed on Ti-6Al-4V substrates and their characterization. Mater Sci Eng C Mater Biol Appl. 2014;36:215–20.
[69]
Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo). 1981;29(10):3067-9.
[70]
He P, Davis SS, Illum L. Chitosan microspheres prepared by spray drying. Int J Pharm. 1999;187(1):53-65.
[71]
Sawayanagi Y, Nambu N, Nagai T. Dissolution properties and bioavailability of phenytoin from ground mixtures with chitin or chitosan. Chem Pharm Bull (Tokyo). 1983;31(6):2064-8.
[72]
Illum L, Farraj NF, Davis SS. Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res. 1994;11(8):1186-9.
[73]
Luessen HL, Lehr CM, Rentel CO, Noach ABJ, de Boer AG, Verhoef JC, Junginger HE. Bioadhesive polymers for the peroral delivery of peptide drugs. J Controlled Release. 1994;29(3):329–38.
[74]
Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11(9):1358-61.
[75]
Dubnika A, Loca D, Berzina-Cimdina L. Functionalized hydroxyapatite scaffolds coated with sodium alginate and chitosan for controlled drug delivery. Proc Estonian Acad Sci. 2012;61(3):193-9.
[76]
Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919-28.
[77]
Du WL, Niu SS, Xu YL, Xu ZR, Fan CL. Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym. 2009;75(3):385–9.
[78]
Ifuku S. Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules. 2014;19(11):18367-80.