Biopolym. Cell. 2014; 30(1):16-24.
Reviews
The start of systems biology in Ukraine
1Obolenskaya M. Yu., 1Tokovenko B. T., 1Kuklin A. V., 1Frolova A. A., 1Rodriguez R. R., 1Dotsenko V. A., 1Dragushchenko O. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The first laboratory of Systems Biology in Ukraine (IMBIG NASU) represents a track record of its scientific results. They include the pioneered development of a web-based tool for genome-wide surveys of eukaryotic promoters for the presence of transcription factors binding sites (COTRASIF); the deciphered mechanisms of the fine-tuned and balanced response of primary hepatocytes to interferon alpha levels recorded after partial hepatectomy; the elaboration of a novel method of gene regulatory network inference compatible with GRID environment and the development of a stoichiometric model of folate-related one carbon unit metabolism in human placenta and its application for the characteristics of the system’s behavior as a whole at different human pathologies.
Keywords: systems biology, gene regulatory network, metabolic modeling, microarray

References

[1] Dollery C, Kitney R. Systems Biology: a vision for engineering and medicine. Report of the Academy of Medical Sciences and Royal Academy of Engineering Working Group on Systems Biology. London, 2007; 65 p.
[2] Hood L, Rowen L, Galas DJ, Aitchison JD. Systems biology at the Institute for Systems Biology. Brief Funct Genomic Proteomic. 2008; 7(4):239–48.
[3] Tokovenko B, Golda R, Protas O, Obolenskaya M, El'skaya A. COTRASIF: conservation-aided transcription-factor-binding site finder. Nucleic Acids Res. 2009; 37(7):e49.
[4] Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 2004; 32, Database issue D91–D94.
[5] Lenhard B, Wasserman WW. TFBS: Computational framework for transcription factor binding site analysis. Bioinformatics. 2002; 18(8):1135–6.
[6] Schones DE, Sumazin P, Zhang MQ. Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics. 2005; 21(3):307–13.
[7] Stormo GD. DNA binding sites: representation and discovery. Bioinformatics. 2000; 16(1):16–23.
[8] Hert GZ, Stormo GD. Identifying DNA and protein patterns with statistically significant alignments of multiple sequences. Bioinformatics. 1999; 15(7–8):563–77.
[9] Hertz GZ, Hartzell GW 3rd, Stormo GD. Identification of consensus patterns in unaligned DNA sequences known to be functionally related. Comput Appl Biosci. 1990; 6(2):81–92.
[10] Stormo GD, Hartzell GW 3rd. Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci USA. 1989; 86(4):1183–7.
[11] Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE. Human-mouse genome comparisons to locate regulatory sites. Nat Genet. 2000; 26(2):225–8.
[12] Lenhard B, Sandelin A, Mendoza L, Engstrom P, Jareborg N, Wasserman WW. Identification of conserved regulatory elements by comparative genome analysis. J Biol. 2003; 2(2):13.
[13] Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005; 21(13):2933–42.
[14] Long F, Liu H, Hahn C, Sumazin P, Zhang MQ, Zilberstein A. Genome-wide prediction and analysis of function-specific transcription factor binding sites. In Silico Biol. 2004; 4(4):395–410.
[15] Draguschenko OO, Tokovenko BT, Obolenskaya MYu. Initial analysis of the results of the genom e-wide search for the genes of response to interferon alpha. Ukr Biokhim Zh. 2010; 82(1):82–9.
[16] Kuklin A, Tokovenko B, Makogon N, Oczko-Wojciechowska M, Jarzab B, Obolenskaya M. Hepatocytes response to interferon alpha levels recorded after liver resection. J Interferon Cytokine Res. 2014;34(2):90-9.
[17] Perepelyuk MM, Fedorchenko DB, Rybalko SL, Obolenskaya MYu. Interferon a expression in the rat liver after partial hepatectomy. Biopolym Cell. 2006; 22(4):276–82.
[18] Perepelyuk MM, Kuklin AV, Shcherba IaV, Tokovenko BT, Makogon NV, Gogler A, Szala S, Obolenskaya MYu. Interferon a and protein kinase R during rat liver restoration after partial hepatectomy. Biopolym Cell. 2009; 25(2):145–9.
[19] Han H, Zhang L, Xu C. Effects of the pathogen infection-related genes on rat liver regeneration following 2/3 hepatectomy. Life Sci J. 2007; 4(2):50–5.
[20] Chen X, Xu C, Zhang F, Ma J. Microarray approach reveals the relevance of interferon signaling pathways with rat liver restoration post 2/3 hepatectomy at cellular level. J Interferon Cytokine Res. 2010; 30(7):525–39.
[21] Markiewski MM, DeAngelis RA, Lambris JD. Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol. 2006; 43(1–2):45–56
[22] Riehle KJ, Dan YY, Campbell JS, Fausto N. New concepts in liver regeneration. J Gastroenterol Hepatol. 2011; (Suppl. 1):203–12.
[23] Hosoya S, Ikejima K, Takeda K, Arai K, Ishikawa S, Yamagata H, Aoyama T, Kon K, Yamashina S, Watanabe S. Innate immune responses involving natural killer and natural killer T cells promote liver regeneration after partialhepatectomy in mice. Am J Physiol Gastrointest Liver Physiol. 2013; 304(3):G293–299.
[24] de Veer MJ, Holko M, Frevel M, Walker E, Der S, Paranjape JM, Silverman RH, Williams BR. Functional classification of interferon-stimulated genes identified using microarrays. J Leukoc Biol. 2001; 69(6):912–20.
[25] Zocco MA, Carloni E, Pescatori M, Saulnier N, Lupascu A, Nista EC, Novi M, Candelli M, Cimica V, Mihm S, Gasbarrini G, Ramadori G, Gasbarrini A. Characterization of gene expression profile in rat Kupffer cells stimulated with IFN-alpha or IFNgamma. Dig Liver Dis. 2006; 38(8):563–77.
[26] Cerulo L., Elkan C., Ceccarelli M. Learning gene regulatory networks from only positive and unlabeled data. BMC Bioinformatics 2010; 11:228.
[27] Gupta R., Stincone A., Antczak P., Durant S., Bicknell R., Bikfalvi A., Falciani F. A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Syst Biol. 2011; 5:52.
[28] Cai X, Bazerque JA, Giannakis GB. Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations. PLoS Comput Biol. 2013; 9(5): e1003068.
[29] Lee WP, Tzou WS. Computational methods for discovering gene networks from expression data. Brief Bioinform. 2009; 10(4): 408–23.
[30] Frolova AO. Overview of methods of reverse engineering of gene regulatory networks: Boolean and Bayesian networks. Biopolym Cell. 2012; 28(3):163-170.
[31] Peter IS, Faure E, Davidson EH. Predictive computation of genomic logic processing functions in embryonic development. Proc Natl Acad Sci USA. 2012; 109(41):16434– 42.
[32] Marbach D, Roy S, Ay F, Meyer PE, Candeias R, Kahveci T, Bristow CA, Kellis M. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 2012; 22(7):1334–49.
[33] Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczynski B, Riddell A, Furlong EE. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet. 2012; 44(2):148–56.
[34] Hurley D, Araki H, Tamada Y, Dunmore B, Sanders D, Humphreys S, Affara M, Imoto S, Yasuda K, Tomiyasu Y, Tashiro K, Savoie C, Cho V, Smith S, Kuhara S, Miyano S, Charnock-Jones DS, Crampin EJ, Print CG. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 2012; 40(6):2377–98.
[35] Reece-Hoyes JS, Diallo A, Lajoie B, Kent A, Shrestha S, Kadreppa S, Pesyna C, Dekker J, Myers CL, Walhout AJ. Enhanced yeast one-hybrid assays for high-throughput genecentered regulatory network mapping. Nat Methods. 2011; 8(12):1059–64.
[36] Clarke BL. Stability of complex reaction networks. Advances in Chemical Physics. Eds S. A. Rice, I. Prigogine. New Yorks: John Wiley, 1980:1–215.
[37] Martseniuk OP, Romanets' KL, Obolens'ka MIu, Huppertz B. Effect of homocysteine on the structure and functions of human placenta trophoblast. Ukr Biokhim Zh. 2009; 81(5):40–9.
[38] Obolenskaya MYu, Rodriges RR, Martsenyuk OP. Folate-related processes in human placenta: gene expression, aminothiols, proliferation and apoptosis. Ukr Biokhim Zh. 2011; 83(1):5–17.
[39] Mislanova C, Martsenyuk O, Huppertz B, Obolenskaya M. Placental markers of folate-related metabolism in preeclampsia. Reproduction. 2011; 142(3):467–76.
[40] Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip. Rev Syst Biol Med. 2013; 5(3):343–65.
[41] Tibbetts AS, Appling DR. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010; 30:57–81.
[42] Stover PJ. Polymorphisms in 1-carbon metabolism, epigenetics and folate-related pathologies. J Nutrigenet Nutrigenomics. 2011; 4(5):293–305.
[43] Forges T, Monnier-Barbarino P, Alberto JM, Gueant-Rodriguez RM, Daval JL, Gueant JL. Impact of folate and homocysteine metabolism on human reproductive health. Hum Reprod Update. 2007; 13(3):225–38.
[44] Shenoy V, Kanasaki K, Kalluri R. Pre-eclampsia: connecting angiogenic and metabolic pathways. Trends Endocrinol Metab. 2010; 21(9):529–36.
[45] Rodrihes RR, Lushchyk IS, Obolens'ka MIu. Stoichiometric model of folate-dependent metabolism of one-carbon units in human placenta. Ukr Biokhim Zh. 2012; 84(4):20–31.
[46] Schuster S, Hilgetag C. On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst. 1994; 2(2):165–82.
[47] Swanson DA, Liu ML, Baker PJ, Garrett L, Stitzel M, Wu J, Harris M, Banerjee R, Shane B, Brody LC. Targeted disruption of the methionine synthase gene in mice. Mol Cell Biol. 2001; 21 (4):1058–65.