Biopolym. Cell. 2013; 29(3):188-206.
Reviews
Biosensors. A quarter of a century of R&D experience
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
The paper is a review of the researches of Biomolecular Electronics Laboratory concerning the development of biosensors based on electrochemical transducers (amperometric and conductometric electrodes, potentiometric pH-sensitive field effect transistors) and different biorecognition molecules (enzymes, cells, antibodies), biomimics (molecularly imprinted polymers), as sensitive elements for direct analysis of substrates or inhibitory analysis of toxicants. Highly specific, sensitive, simple, fast and cheap detection of different substances renders them as promising tools for needs of health care, environmental control, biotechnology, agriculture and food industries. Diverse biosensor formats for direct determination of different analytes and inhibitory enzyme analysis of a number of toxins have been designed and developed. Improvement of their analytical characteristics may be achieved by using differential mode of measurement, negatively or positively charged additional semipermeable membranes, nanomaterials of different origin, genetically modified enzymes. These approaches have been aimed at increasing the sensitivity, selectivity and stability of the biosensors and extending their dynamic ranges. During the last 25 years more than 50 laboratory prototypes of biosensor systems based on mono- and multibiosensors for direct determination of a variety of metabolites and inhibitory analysis of different toxic substances were created. Some of them were tested in real samples analysis. The advantages and disadvantages of the biosensors developed are discussed. The possibility of their practical application is considered.
Keywords: electrochemical biosensor, immobilized enzyme, substrate, inhibitor, multibiosensor
Full text: (PDF, in English)
References
[2]
Dzyadevych S. V., Soldatkin A. P., Korpan Y. I. et al. Biosensors based on enzyme field-effect transistors for determination of some substrates and inhibitors Anal. Bioanal. Chem 2003 377, N 3:496–506.
[3]
Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P. et al. Conductometric enzyme biosensors Handbook of Biosensors and Biochips / Eds S. Marcs, D. C. Cullen, I. Karube et al Chichester: J. Willey & Sons Ltd., 2007:379–393.
[4]
Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P. et al. Amperometric enzyme biosensors: past, present and future ITBMRBM 2008 29, N 2 P. 171–180.
[5]
Dzyadevych S. V., Soldatkin A. P., El'skaya A. V. et al. Enzyme biosensors based on ion-selective field-effect transistors Anal. Chim. Acta 2006 568, N 1–2:248–258.
[6]
Shul'ga A. A., Sandrovsky A. K., Strikha V. I. et al. Overall characterization of ISFET-based glucose biosensor Sens. Actuators B: Chem 1992 10, N 1:41–46.
[7]
Dzyadevich S. V., Korpan Y. I., Arkhipova V. N. et al. Application of enzyme field-effect transistors for determination of glucose concentrations in blood serum Biosens. Bioelectron 1999 14, N 3:283–287.
[8]
Boubryak O. A., Soldatkin A. P., Starodub N. F. et al. Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor Sens. Actuators B: Chem 1995 27, N 1–3:429–431.
[9]
Hendji A. N., Jaffrezic-Renault N., Martelet C. et al. Sensitive detection of pestecides using differential ISFET-based scheme and immobilized cholinesterases Anal. Chim. Acta 1993 281, N 1:3–11.
[10]
Arkhypova V. N., Dzyadevych S. V., Soldatkin A. P. et al. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances Talanta 2001 55, N 5 P. 919–927.
[11]
Gorchkov D. V., Soldatkin A. P., Maupas H. et al. Correlation between the electrical charge propertes of polymeric membranes and the characteristics of ion selective field effect transistors or penicillinase based enzymatic field effect transistors Anal. Chim. Acta 1996 331, N 3:217–223.
[12]
Korpan Y. I., Gonchar M. V., Sibirny A. A. et al. Development of highly selective and stable potentiometric sensors for formaldehyde determination Biosens. Bioelectron 2000 15, N 1–2 P. 77–83.
[13]
Soldatkin A. P., Montoriol J., Sant W. et al. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane Talanta 2002 58, N 2:351–357.
[14]
Soldatkin A. P., Montoriol J., Sant W. et al. Development of potentiometric creatinine-sensitive biosensor based on ISFET and creatinine deiminase immobilised in PVA/SbQ photopolymeric membrane Mater. Sci. Eng. C 2002 21, N 1–2:75–79.
[15]
Anh T. M., Dzyadevych S. V., Soldatkin A. P. et al. Development of tyrosinase biosensor based on pH-sensitive field-rffect transistor for phenols determination in water solution Talanta 2002 56, N 4:627–634.
[16]
Dzyadevych S. V., Mai Anh T., Soldatkin A. P. et al. Development of enzyme biosensor based on pH-sensitive field-effect transistors for detection of phenolic compounds Bioelectrochemistry 2002 55, N 1–2:79–81.
[17]
Biloivan O. A., Dzyadevich S. V., El'skaya A. V. et al. Development of bi-enzyme microbiosensor based on solid-contact ionselective microelectrodes for protein detection Sens. Actuators B: Chem 2007 123, N 2:1096–1100.
[18]
Marrakchi M., Dzyadevych S. V., Biloivan O. A. et al. Development of trypsine biosensor based on ion-sensitive field-effect transistors for proteins deter mination Mater. Sci. Eng. C 2006 26, N 2–3:369–373.
[19]
Biloivan O. A., Dzyadevich S. V., Boubriak O. A. et al. Development of enzyme biosensor based on ISFETs for Quantitative analysis of serine proteinases Electroanalysis 2004 16, N 22 P. 1883–1889.
[20]
Soldatkin A. P., El'skaya A. V., Shul'ga A. A. et al. Glucose sensitive field-effect transistor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extention of its dynamic range Anal. Chim. Acta 1993 283, N 3:695–701.
[21]
Volotovsky V., Soldatkin A. P., Shulga A. A. et al. Glucose-sensitive ion-sensitive field-effect transistor-based biosensor with additional positively charged membrane. Dynamic range extension and reduction of buffer concentration influence on the sensor response Anal. Chim. Acta 1996 322, N 1–2 P. 77–81.
[22]
Gorchkov D. V., Soldatkin A. P., Poyard S. et al. Application of charged polymeric materials as additional permselective membranes for improvement of the performance characteristics of ureasensitive enzymatic field effect transistors. 1. Determination of urea in model solutions Mater. Sci. Eng. C 1997 5, N 1 P. 23–28.
[23]
Gorchkov D. V., Soldatkin A. P., Poyard S. et al. Application of charged polymeric materials as additional permselective membranes for improvement of the performance characteristics of ureasensitive enzymatic field effect transistors. 2. Urea determination in blood serum Mater. Sci. Eng. C 1997 5, N 1:29–34.
[24]
Soldatkin A. P., Dzyadevych S. V., El'skaya A. V. et al. Pathways for improving potentiometric and conductometric enzymatic biosensors Encyclopedia of Sensors / Eds C. A. Grimes, E. C. Dickey, M. V. Pishko Stevenson Ranch: Amer. Sci. Publ., 2006 Vol. 7:331–348.
[25]
de Melo J. V., Soldatkin A. P., Martelet C. et al. Use of competitive inhibition for driving sensitivity and dynamic range of urea ENFETs Biosens. Bioelectron 2003 18, N 4:345–351.
[26]
Soldatkin A. P., Montoriol J., Sant W. et al. A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs Biosens. Bioelectron 2003 19, N 2 P. 131–135.
[27]
Zinchenko O. A., Marchenko S. V., Sergeyeva T. A. et al. Application of creatinine-sensitive biosensor for hemodialysis control Biosens. Bioelectron 2012 35, N 1:466–469.
[28]
Marchenko S. V., Soldatkin A. P. Potentiometric biosensor based on recombinant urease for urea detection in real biological samples Sensor Electronics and Microsystem Technologies 2012 3 (9), N 4:40–48.
[29]
Soldatkin A. P. Urease-based biosensor with improved sensitivity for analysis of heavy metal ions Biopolym. Cell 1997 13, N 5:377–379.
[30]
Dzyadevych S. V., Arkhypova V. N., Martelet C. et al. Potentiometric biosensors based on ISFETs and immobilized cholinesterases Electroanalysis 2004 16, N 22:1873–1882.
[31]
Dzyadevych S. V., Soldatkin A. P., Arkhypova V. N. et al. Early-warning electrochemical biosensor system for the environmental monitoring based on enzyme inhibition effect Sens. Actuators B: Chem 2005 105, N 14:81–87.
[32]
Arkhypova V. N., Dzyadevych S. V., Soldatkin A. P. et al. Development and optimisation of biosensors based on pH-sensitive field effect transistor and cholinesterase for sensitive detection of solanaceous glycoalkaloids Biosens. Bioelectron 2003 18, N 8:1047– 1053.
[33]
Arkhypova V. N., Dzyadevych S. V., Soldatkin A. P. et al. Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes Sens. Actuators B: Chem 2004 103, N 1–2:416–422.
[34]
Soldatkin A. P., Arkhypova V. N., Dzyadevych S. V. et al. Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs Talanta 2005 66, N 1:28–33.
[35]
Dzyadevych S. V., Arkhypova V. N., Soldatkin A. P. et al. Enzyme biosensor for tomatine detection in tomatoes Anal. Lett 2004 37, N 8 P. 1611–1624.
[36]
Volotovsky V., Kim N. EDTA Determination by urease-based inhibition biosensor Electroanalysis 1997 10, N 1:61–63.
[37]
Korpan Y. I., Nazarenko E. A., Skryshevskaya I. V. et al. Potato glycoalkaloids: true safety or false sense of security? Trends Biotechnol 2004 22, N 3:147–151.
[38]
Nazarenko A. A., Soldatkin O. P., Sosovska O. F. et al. Potentiometric biosensors for determination of potato glycoalkaloids: control of its analytical characteristics, comparison with thin-layer chromatography method Biopolym. Cell 2005 21, N 3:275–282.
[39]
Arkhypova V. N., Dzyadevych S. V., Jaffrezic-Renault N. et al. Biosensors for assay of glycoalkaloids in potato tubers App Biochem. Microbiol. 2008 44, N 3:314-318.
[40]
Soldatkin O. O., Nazarenko O. A., Pavlyuchenko O. S. et al. Optimization of enzymatic bioselective elements as components of potentiometric multibiosensor Biopolym. Cell 2008 24, N 1:41–50.
[41]
Soldatkin O. O., Pavlyuchenko O. S., Kukla O. L. et al. Optimization of multibiosensor operation for inhibitory analysis of toxins Biopolym. Cell 2008 24, N 6:494–502.
[42]
Soldatkin O. O., Pavlyuchenko O. S., Kukla O. L., Dzyadevych S. V. Development of procedure of multibiosensor detection of heavy metals and pesticides in environment Biotechnology 2010 3, N 2:71–81.
[43]
Soldatkin O. O., Pavlyuchenko O. S., Kukla O. L. et al. Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin Biopolym. Cell 2009 25, N 3:204–209.
[44]
Soldatkin A. P., Dzyadevych S. V., Korpan Y. I. et al. Biosensors based on conductometric detection Biopolym. Cell 1998 14, N 4:268–276.
[45]
Shul'ga A. A., Soldatkin A. P., El'skaya A. V. et al. Thin-film conductometric biosensors for glucose and urea determination Biosens. Bioelectron 1994 9, N 3:217–223.
[46]
Dzyadevich S. V., Shul'ga A. A., Soldatkin A. P. et al. Conductometric biosensor based on cholinesterases for sensitive detection of pesticides Electroanalysis 1994 6, N 9:752–758.
[47]
Korpan Y. I., Dzyadevich S. V., Arkhipova V. N. et al. Enzymebased electrochemical sensors for formaldehyde detection Sens. Mater 2000 12, N 2:79–86.
[48]
Dzyadevych S. V., Arkhypova V. N., Korpan Y. I. et al. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics Anal. Chim. Acta 2001 445, N 1:47–55.
[49]
Saiapina O. Y., Dzyadevych S. V., Jaffrezic-Renault N., Soldatkin O. P. Development and optimization of a novel conductometric bi-enzyme biosensor for L-arginine determination Talanta 2012 92:58–64.
[50]
Zhylyak G. A., Dzyadevich S. V., Korpan Y. I. et al. Application of urease conductometric biosensor for heavy-metal ion determination Sens. Actuators B: Chem 1995 24, N 1–3:145–148.
[51]
Jaffrezic-Renault N., Dzyadevych S. V. Conductometric microbiosensors for environmental monitoring Sensors 2008 8, N 4 P. 2569–2588.
[52]
Mai Anh T., Dzyadevych S. V., Prieur N. et al. Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor Mater. Sci. Eng. C 2006 26, N 2–3:453–456.
[53]
Soldatkin A. P., El'skaya A. V., Shul'ga A. A. et al. Glucose sensitive conductometric biosensor with additional Nafion membrane: reduction of influence of buffer capacity on the sensor response and extension of its dynamic range Anal. Chim. Acta 1994 288, N 3:197–203.
[54]
Dzyadevych S. V., Soldatkin A. P., Chovelon J. M. Assessment of the toxicity of parathion and its photodegradation products in water samples using conductometric enzyme biosensors Anal. Chim. Acta 2002 459, N 1:33–41.
[55]
Dzyadevych S. V., Chovelon J. M. A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique Mater. Sci. Eng. C 2002 21, N 1–2:55–60.
[56]
Soldatkin O. O., Peshkova V. M., Dzyadevych S. V. et al. Novel sucrose three-enzyme conductometric biosensor Mater. Sci. Eng. C 2008 28:959–964.
[57]
Peshkova V. M., Saiapina O. Y., Soldatkin O. O. et al. Conductometric enzyme biosensor for lactose detection Biotechnology 2008. 1, N 4:76–84.
[58]
Peshkova V. M., Saiapina O. Y., Soldatkin O. O., Dzyadevych S. V. Enzyme conductometric biosensor for maltose determination Biopolym. Cell 2009 25, N 4:272–278.
[59]
Korpan Y. I., Dzyadevich S. V., Zharova V. P., El'skaya A. V. Conductometric biosensor for ethanol detection based on whole yeast cells Ukr. Biokhim. Zh 1994 66, N 1:78–82.
[60]
Chouteau C., Dzyadevych S. V., Chovelon J. M., Durrieu C. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae Biosens. Bioelectron 2004 19, N 9:1089–1096.
[61]
Chouteau C., Dzyadevych S. V., Durrieu C., Chovelon J. M. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples Biosens. Bioelectron 2005 21, N 2:273–281.
[62]
Ben Ali M., Gonchar M., Gayda G. et al. Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements Biosens. Biolectron 2007 22, N 12:2790–2795.
[63]
Goriushkina T. B., Soldatkin A. P., Dzyadevych S. V. Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine J. Agric. Chem 2009 57, N 15:6528–6535.
[64]
Goriushkina T. B., Soldatkin A. P., Dzyadevych S. V. Application of amperometric enzyme biosensors for wine and must analysis Procedia Chem 2009 1, N 1:277–280.
[65]
Shkotova L. V., Goryushkina T. B., Tran-Minh C. et al. Amperometric biosensor for lactate analysis in wine and must during fermentation Mater. Sci. Eng. C 2008 28, N 5–6:943–948.
[66]
Shkotova L. V., Soldatkin A. P., Gonchar M. V. et al. Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film Mater. Sci. Eng. C 2006 26, N 2–3:411–414.
[67]
Goriushkina T. B., Shkotova L. V., Gayda G. Z. et al. Amperometric biosensor based on glycerol oxidase for glycerol determination Sens. Actutors B: Chem 2010 144, N 2:361–367.
[68]
Schuvailo O. M., Soldatkin O. O., Lefebvre A. et al. Highly selective microbiosensors for in vivo measurements of glucose, lactate and glutamate Anal. Chim. Acta 2006 573–574:110–116.
[69]
Schuvailo O. N., Dzyadevych S. V., El'skaya A. V. et al. Carbonfibre-based microbiosensors for in vivo measurements of acetylcholine and choline Biosens. Bioelectron 2005 21, N 1 P. 87–94.
[70]
Schuvailo O. M., Gaspar S., Soldatkin A. P., Csoregi E. Ultramicrobiosensor for the selective detection of glutamate Electroanalysis 2007 19, N 1:71–78.
[71]
Pernot P., Mothet J. P., Schuvailo O. et al. Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system Anal. Chem 2008 80, N 5:1589–1597.
[72]
Soldatkin O. O., Schuvailo O. M., Marinesco S. et al. Microbiosensor based on glucose oxidase and hexokinase co-immobilised on platinum microelectrode for selective ATP detection Talanta 2009 78, N 3:1023–1028.
[73]
Tavolaro A., Tavolaro P., Drioli E. Zeolite inorganic supports for BSA immobilization: comparative study of several zeolite crystals and composite membranes Colloids Surf. B: Biointerfaces 2007–55, N 1:67–76.
[74]
Kirdeciler S. K., Soy E., Ozturk S. et al. A novel urea conductometric biosensor based on zeolite immobilized urease Talanta 2011 85, N 3:1435–1441.
[75]
Soldatkin O. O., Soy E., Errachid A. et al. Influence of composition of zeolite/enzyme nanobiocomposites on analytical characteristics of urea biosensor based on ion-selective field-effect transistors Sens. Lett 2011 9, N 6:2320–2326.
[76]
Soldatkin O. O., Kucherenko I. S., Shelyakina M. et al. Application of different zeolite for improvement of the characteristics of a pH-FET biosensor based on immobilized urease Electroanalysis 2013 25, N 2:468–474.
[77]
Saiapina O. Y., Dzyadevych S. V., Walcarius A., Jaffrezic N. A novel highly sensitive zeolite-based conductometric microsensor for ammonium determination Anal. Lett 2012 45, N 11 P. 1467–1484.
[78]
Saiapina O. Y., Pyeshkova V. M., Soldatkin O. O. et al. Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination Mater. Sci. Eng. C 2011 31, N 7 P. 1490–1497.
[79]
Saiapina O. Y., Matsyshyn M., Pyeshkova V. M. et al. Application of ammonium-selective zeolite for enhancement of conductometric bi-enzyme biosensor for L-arginine detection Sensor Electronics and Microsystem Technologies 2012 3 (9), N 4:49–66.
[80]
Kucherenko I. S., Soldatkin O. O., Kasap B. O. et al. Elaboration of urease adsorption on silicalite for biosensor creation Electroanalysis 2012 24, N 6:1380–1385.
[81]
Biloivan O. A., Rogaleva N. S., Korpan Y. I. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-walled carbon nanotubes Biopolym. Cell 2010 26, N 1:56–61.
[82]
Rogaleva N., Korpan Y., Biloivan O. Glucose biosensor based on screen-printed electrodes and glucose oxidase layer modified by MWCNT-NH2 Sens. Lett 2011 9, N 6:2356–2359.
[83]
Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates – a way towards artificial antibodies Angew. Chem. Int. Ed. Engl 1995 34, N 17:1812–1832.
[84]
Sergeyeva T. A., Piletsky S. A., Brovko A. A. et al. Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes Analyst 1999 124:331–334.
[85]
Sergeyeva T. A., Piletsky S. A., Brovko A. A. et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection Anal. Chim. Acta 1999 392, N 2–3:105–111.
[86]
Sergeyeva T. A., Matuschewski H., Piletsky S. A. et al. Molecularly imprinted polymer membranes for substance-selective solidphase extraction from water by surface photo-grafting polymerization J. Chromatogr. A 2001 907, N 1–2:89–99.
[87]
Matuschewski H., Sergeyeva T. A., Bendig J. et al. Surface engineering: Molecularly imprinted affinity membranes by photograft polymerization SPIE 2001 4205:65–74.
[88]
Sergeyeva T. A., Piletsky S. A., Piletskaya E. V. et al. In situ formation of porous molecularly imprinted polymer membranes Macromolecules 2003 36, N 19:7352–7357.
[89]
Sergeyeva T. A., Panasyuk-Delaney T. L., Piletska O. V. et al. Capacitive sensor for environmental monitoring based on thin films of molecularly imprinted polymers. Computational modeling for optimization of composition of synthetic mimics of bioreceptors Ukr. Biokhim. Zh 2006 78, N 2:121–130.
[90]
Piletsky S. A., Piletskaya E. V., Sergeyeva T. A. et al. Molecularly imprinted self-assembled films with specificity to cholesterol Sensors and Actuators B: Chem 1999 60, N 2–3:216–220.
[91]
Sergeyeva T. A., Slinchenko O. A., Gorbach L. A. et al. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection Anal. Chim. Acta 2010 659, N 1–2:274–279.
[92]
Sergeyeva T. A., Piletska O. V., Goncharova L. A. et al. Sensor system based on molecularly-imprinted polymer membranes for the selective recognition of aflatoxin b1 Ukr. Biokhim. Zh 2008 80, N 3:84–93.
[93]
Sergeyeva T. A., Gorbach L. A., Slinchenko O. A. et al. Towards development of colorimetric test-systems for phenols detection based on computationally-designed molecularly imprinted polymer membranes Mater. Sci. Eng. C 2010 30, N 3:431–436.
[94]
Sergeyeva T. A., Gorbach L. A., Piletska E. V. et al. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes Anal. Chim. Acta 2013 770:161–168.