Biopolym. Cell. 2013; 29(1):33-41.
Reviews
Nonchromosomal cytogenetic analysis of mammal somatic cells
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
45, Vasilkivska Str., Kyiv, Ukraine, 01022
Abstract
The mutational events that take place in mammalian somatic cells influenced with different endogenous and exogenous factors are presented in this review. The nonchromosomal method of research allows taking into account the complex cell characteristics without time-consuming analysis of the chromosomes as such. As a result, the information can be obtained about the mitotic (phases of mitosis, the number of nuclei per cell, micronuclei, pathology of mitosis) and vital (mitotic index, apoptosis) cell statuses, as well as about the state of chromosomal integrity (the presence of nucleoplasmic bridges, nucleus protrusions, chromosome fragmentation, micronuclei). Depending on the material studied (erythrocytes and lymphocytes of peripheral blood, buccal cells, permanent cell lines etc.), a complex of cytogenetic characteristics can be selected for each case which is the most informative for determination of the mutational spectra in mammalian somatic cells.
Keywords: mutagenesis, somatic cells, cytogenetic analysis, pathology
Full text: (PDF, in English) (PDF, in Russian)
References
[1]
Fenech M. Cytokinesis-block micronucleus assay evolves into a «cytome» assay of chromosomal instability, mitotic dysfunction and cell death Mutat. Res 2006 600, N 1–2:58–66.
[2]
Timoshevsky V. A, Lebedev I. N., Vasiliev S. A., Sukhanova N. N., Yakovleva Y. S., Torkhova N. B., Puzyrev V. P. Chromosomal and cytomal analysis of somatic cell in workers of radiochemical industry with incorporated 239Pu Radiation Biology. Radioecology 2010 50, N 6:672–680.
[3]
Steinbeck R. G. Pathologic mitoses and pathology of mitosis in tumorigenesis Eur. J. Histochem 2001 45, N 4:311–318.
[4]
Stevens J. B., Liu G., Bremer S. W., Ye K. J., Xu W., Xu J., Sun Y., Wu G. S., Savasan S., Krawetz S. A., Ye C. J., Heng H. H. Mitotic cell death by chromosome fragmentation Cancer Res 2007 67, N 16:7686–7694.
[5]
Ilyinskikh N. N., Novitsky V. V., Vanchugova N. N., Ilyinskikh I. N. Micronucleus test and cytogenetic unstability. Tomsk: Univ. press, 1992 272 p.
[6]
O’Neill F. J., Miles C. P. Origin of nuclei in spontaneous HeLa cell chromosome pulverization J. Natl Cancer Inst 1971 46, N 5:1085–1092.
[7]
Stenman S., Saksela E. The relationship of Sendai virus-induced chromosome pulverization to cell cyclus in HeLa cells Hereditas 1971 69, N 1:1–14.
[8]
Alov I. A., Aspiz M. E., Zapara O. M. Mechanism of reversibility of colchicine mitosis induced by colcemid Bull. Exp. Biol. Med 1976 82, N 7:874–876.
[9]
Goyanes-Villaescusa V. Cycles of reduplication in megakaryocyte nuclei. Cell Prolif 1969 2, N 2:165–168.
[10]
Pan H., Zhou F., Gao S. J. Kaposi’s sarcoma-associated herpesvirus induction of chromosome instability in primary human endothelial cells Cancer Res 2004 64, N 12:4064–4068.
[11]
Paoli J., Smedh M., Wennberg A. M., Ericson M. B. Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics J. Invest. Dermatol 2008 128, N 5:1248–1255.
[12]
Tashiro T., Kawakita C., Takai C., Yoshida T., Sakiyama S., Kondo K., Sano N. Primary pulmonary malignant peripheral nerve sheath tumor: a case report Acta Cytol 2007 51, N 5:820–824.
[13]
Murch A. R., Grounds M. D., Marshall C. A., Papadimitriou J. M. Direct evidence that inflammatory multinucleate giant cells form by fusion J. Pathol 1982 137, N 3:177–180.
[14]
Zhu J., Beattie E. C., Yang Y., Wang H. J., Seo J. Y., Yang L. X. Centrosome impairments and consequent cytokinesis defects are possible mechanisms of taxane drugs Anticancer Res 2005 25, N 3B:1919–1925.
[15]
Yun C., Cho H., Kim S. J., Lee J. H., Park S. Y., Chan G. K., Cho H. Mitotic aberration coupled with centrosome amplification is induced by hepatitis B virus X oncoprotein via the Ras-mitogen-activated protein/extracellular signal-regulated kinase-mitogen-activated protein pathway Mol. Cancer Res 2004 2, N 3:159–169.
[16]
Walen K. H. Spontaneous cell transformation: karyoplasts derived from multinucleated cells produce new cell growth in senescent human epithelial cell cultures In Vitro Cell. Dev. Biol. Anim 2004 40, N 5–6:150–158.
[17]
Kuhn E. M., Therman E., Susman B. Amitosis and endocycles in early cultured mouse trophoblast Placenta 1991 12, N 3 :251–261.
[18]
Arkhipov S. A., Shkurupiy V. A., Ijine D. A., Ignatovich N. V., Akhromenko E. S., Arkhipova V. V. Formation and some cytophysiological characteristics of polynuclear macrophages in primary cultures of peritoneal cells Bull. Exp. Biol. Med 2008 146, N 6:838–841.
[19]
Elias H., Fong B. B. Nuclear fragmentation in colon carcinoma cells Hum. Pathol 1978 9, N 6:679–684.
[20]
Chen Y. Q., Wan B. K. A study on amitosis of the nucleus of the mammalian cell. I. A study under the light and transmission electron microscope Acta. Anat. (Basel) 1986 127, N 1:69–76.
[21]
Kuhn E. M., Therman E., Susman B. Amitosis and endocycles in early cultured mouse trophoblast Placenta 1991 12, N 3:251–261.
[22]
Manskih V. N. On the questionthe about mechanism of micronuclei formation in normal conditions and under the influence of Nnitroso-N-metilkarbamid. Bull. Exp. Biol. Med 2006 141, N 2:217–220.
[23]
Schmid W. The micronucleus test Mutat. Res 1975 31, N 1:9–15.
[24]
Heddle J. A. A rapid in vivo test for chromosome damage Mutat. Res 1973 18, N 2:187–190.
[25]
Vodunon A. S., Ponomareva N. A., Abramova Z. I. Cytogenetic changes in erythrocytes of patients with atopic bronchial asthma Scientific notes of the Kazan State University. A series of nature science 2008 150, N 2:101–105.
[26]
Kovalova O., Kobozeva N., Burdo O., Glazko T. Micronuclei test as method of definition the seasonal alteration of cytogenetic characteristics in mammals Rare theriofauna and its conservation. Series Proc. Theriological Luhansk, 2008 Vol. 9:266–269.
[27]
Bonassi S., Znaor A., Ceppi M., Lando C., Chang W., Holland N., Kirch-Volders M., Zeiger E., Ban S., Barale R., Bigatti M. P., Bolognesi C., Cebulka-Wasilewska A., Fabianova E., Fucic A., Hagmar L., Joksic G., Martelli A., Migliore L., Mirkova E., Scarfi M. R., Zijno A., Norppa H., Fenech M. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans Carcinogenesis 2007 28, N 3:625–631.
[28]
Nersesian A. K.The micronucleus test in human exfoliative cells as a method for studying the action of mutagens/carcinogens. Tsitol. Genet 1996 30, N 5:91–96.
[29]
Rajkokila K., Shajithanoop S., Usharani M. V. Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamilnadu, South India J. Med. Genet. Genom 2010 2, N 2:24–28.
[30]
Lando C., Hagmar L., Bonassi S. Biomarkers of cytogenetic damage in humans and risk of cancer. The European Study Group on Cytogenetic Biomarkers and Health (ESCH) Med. Lav 1998 89, N 2:124–131.
[31]
Koliubaeva S. N. Chromosomal aberrations, micronuclei and apoptosis in lymphocytes at radiation and other pathological states: dis. ... Doctor of Science: 01.03.01 – radiobiology St. Petersburg, 2010 261 p.
[32]
Nersesyan A. K. Possible role of the micronucleus assay in diagnostics and secondary prevention of cervix cancer: a minireview Tsitol. Genet 2007 41, N 5 :64–66.
[33]
Pejchal J., Vasilieva V., Hristozova M., Vilasova Z., Vavrova J., Alyakov M., Tichy A., Zarybnicka L., Sinkorova Z., Tambor V., Kubelkova K., Dresler J. Cytokinesis-block micronucleus (CBMN) assay/CBMN cytome assay in human lymphocytes after in vitro irradiation and its use in biodosimetry Mil. Med. Sci. Lett. (Rev. sanitaire militaire) 2011 80, N 1:28–37.
[35]
Nikiforov A. M., Fedortseva R. F., Monosova E. K., Iartseva N. M., Kravtsov V. Iu. Nuclei with protrusions – «tailed» nucleus and radiation cytogenetic markers in culture of lymphocytes after X-ray irradiation Radiats Biol Radioecol 2000 40, N 3:299–304.
[36]
Sycheva L. P. Biological significance, criteria and limits of the full range of karyological variation in the evaluation of man cytogenetic status Med. Genetics 2007 6, N 11:3–11.
[37]
Sycheva L. P., Lovacheva O. V., Stanuk T. A., Yevtushenko G. V., Kovalenko M. A. Cytogenetic lesions of bronchial epitheliocytes in patients with pulmonary tuberculosis Tuberkulez i Bolezni Legkikh 2008 N 7:35–38.
[38]
Ibragimova N. V. Investigation of nuclei anomalies of somatic cells populations exposed to radiation exposure in vitro and in vivo Dissertation of the candidate biological sciences 14.00.46 St. Petersburg, 2004 122 p.
[39]
Khudoley V. V. Carcinogens: a characteristic, pattern, mechanisms of action St. Petersburg, 1999 256 p.
[40]
Agamova K. A. Clinical cytology in the study of radiation pathomorphism of breast cancer News of Clinical Cytology of Russia 1997 2, N 2:52–58.
[41]
Madonova Y. B., Trofimov V. A. Morphological abnormalities of interphase nucleus in donor lymphocytes at the chronic ionizing radiation at low doses Morphological newsletter 2009 N 3– 4:52–57.
[42]
Johnson R. T., Rao P. N. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei Nature 1970 226, N 5247:717–722.
[43]
Lau Y. F., Brown R. L., Arrighi F. E. Induction of premature chromosome condensationin CHO cells fused with polyethlyene glycol Exp. Cell Res 1977 110, N 1:57–61.
[44]
Stevens J. B., Abdallah B. Y., Regan S. M., Liu G., Bremer S. W., Ye C. J., Heng H. H. Comparison of mitotic cell death by chromosome fragmentation to premature chromosome condensation Mol. Cytogenet 2010 3 :20.
[45]
Sperling K. Cell cycle and chromosome cycle: Morphological and functional aspects Premature chromosome condensation application in basic, clinical and mutation research . Eds P. Rao, R. Johnson, K. Sperling New York: Acad. press Inc., 1982:43–75.
[46]
Ianzini F., Bertoldo A., Kosmacek E. A., Phillips S. L., Mackey M. A. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells Cancer Cell Int 2006 6:11.
[47]
Erenpreisa J., Kalejs M., Ianzini F., Kosmacek E. A., Mackey M. A., Emzinsh D., Cragg M. S., Ivanov A., Illidge T. M. Segregation of genomes in polyploid tumour cells following mitotic catastrophe Cell Biol. Int 2005 29, N 12:1005–1011.
[48]
Kovaleva O. A., Glazko T. T., Kochubey T. P., Lukash L. L., Kudryavets Y. I. Spontaneous premature condensation of chromosomes in normal and transformed mammal cells Exp. Oncol 2007 29, N 1:18–22.
[49]
Neitzel H., Neumann L. M., Schindler D., Wirges A., Tonnies H., Trimborn M., Krebsova A., Richter R., Sperling K. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition Am. J. Hum. Genet 2002 70, N 4:1015–1022.
[50]
Mackey M. A., Morgan W. F., Dewey W. C. Nuclear fragmentation and premature chromosome condensation induced by heat shock in S-phase Chinese hamster ovary cells Cancer Res 1988 48, N. 22:6478–6483.
[51]
Ricci M. S., Zong W. X. Chemotherapeutic approaches for targeting cell death pathways Oncologist 2006 11, N 4:342–357.
[52]
Castedo M., Perfettini J. L., Roumier T., Andreau K., Medema R., Kroemer G. Cell death by mitotic catastrophe: a molecular definition Oncogene 2004 23, N 16:2825–2837.
[53]
Roninson I. B., Broude E. V., Chang B.D. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells Drug Resist. Updat 2001 4, N 5:303–313.
[54]
Hong Q., Hsu L. J., Schultz L., Pratt N., Mattison J., Chang N. S. Zfra affects TNF-mediated cell death by interacting with death domain protein TRADD and negatively regulates the activation of NF-kappaB, JNK1, p53 and WOX1 during stress response BMC Mol. Biol 2007 8:50.