Biopolym. Cell. 2012; 28(6):434-440.
Structure and Function of Biopolymers
Prolyl-tRNA synthetase from Thermus thermophilus is eukaryotic-like but aminoacylates prokaryotic tRNAPro
1, 2Yaremchuk A. D., 1Boyarshin K. S., 1, 2Tukalo M. A.
  1. State Key Laboratory of Molecular and Cellular Biology
    Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. EMBL
    6, rue Jules Horowitz, 38042 Grenoble Cedex 9, France

Abstract

Aim. Cloning, sequencing and expression of the gene encoding prolyl-tRNA synthetase, a class IIa enzyme, from the extreme thermophile T. thermophilus HB8 (ProRSTT). Methods. Search for the ProRSTT gene was performed by Southern blot hybridization with chromosomal DNA, the digoxigenin-labeled PCR fragments of DNA being used as a probe. Results. The gene of T. thermophilus HB8 ProRS has been cloned and sequenced. The predicted 477-amino acid protein is significantly more similar in sequence to eukaryotic and archaeal than to eubacterial ProRS. Sequence analysis shows two distinct structural groups of ProRS which most likely had diverged early in evolution: (1) eukaryotic/archaeal group characterized by the absence of an insertion domain between motifs 2 and 3 and by the presence of an extra C-terminal domain beyond the normal class IIa anticodon binding domain; and (2) prokaryotic with a very large insertion between motif 2 and 3 and no extra C-terminal domain. Conclusions. T. thermophilus proS gene was overexpressed in Escherichia coli and overproduced ProRSTT was purified to high homogeneity. In spite of its eukaryotic-like features, T. thermophilus ProRS exhibited highly specific cross-species aminoacylation. The charging ability of the ProRSTT is restricted to prokaryotic tRNAPro.
Keywords: prolyl-tRNA synthetase from Thermus thermophilus, proS gene, сloning, sequencing, expression

References

[1] Mazauric M. H., Reinbolt J., Lorber B., Ebel C., Keith G., Giege R., Kern D. 1996 An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus Eur. J. Biochem 241, N 3:814– 826.
[2] Burke B., Yang F., Chen F., Stehlin C., Chan B., Musier-Forsyth K. 2000 Evolutionary coadaptation of the motif 2 – acceptor stem interaction in the class II prolyl-tRNA synthetase system Biochemistry 39, N 50:15540–15547.
[3] Eriani G., Delarue M., Poch O., Gangloff J., Moras D. 1990 Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs Nature 347, N 6289 P. 203–206.
[4] Cusack S., Berthet-Colominas C., Hartlein M., Nassar N., Leberman R. 1990 A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 C Nature 347, N 6290:249–255.
[5] Cusack S., Yaremchuk A., Krikliviy I., Tukalo M. 1998 tRNA(Pro) anticodon recgnition by Thermus thermophilus prolyl-tRNA synthetase Structure 6, N 1:101–108.
[6] Yaremchuk A., Cusack S., Tukalo M. 2000 Crystal structure of a eukaryote/archaeon-like prolyl-tRNA synthetase and its complex with tRNAPr)(CGG) EMBO J 19, N 17:4745–4758.
[7] Beuning P. J., Musier-Forsyth K. 2000 Hydrolytic editing by a class II aminoacyl-tRNA synthetase Proc. Natl Acad. Sci. USA 97, N 16:8916–8920.
[8] Ahel I., Korencic D., Ibba M., Soll D. 2003 Trans-editing of mischarged tRNAs Proc. Natl Acad. Sci. USA 100, N 26 P. 15422–15427.
[9] Liu H., Peterson R., Kessler J., Musier-Forsith K. 1995 Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro Nucleic Acids Res 23, N 1:165–169.
[10] Stehlin C., Burke B., Yang F., Liu H., Shiba K., Musier-Forsyth K. 1998 Species-specific differences in the operational RNA code for aminoacylation of tRNAPro Biochemistry 37, N 23 P. 8605–8613.
[11] Yaremchuk A., Cusack S., Tukalo M. 2000 Crystallizaion and preliminary X-ray diffraction analysis of Thermus thermophilus prolyltRNA synthetase Acta Crystallogr. D Biol. Crystallogr 56, N 1:195–196.
[12] Yaremchuk A., Kriklivyi I., Cusack S., Tukalo M. 2000 Improved crystals of Thermus thermophilus prolyl-tRNA synthetase complexed with cognate tRNA obtained by crystallization from precipitate Acta Crystallogr. D Biol. Crystallogr 56, N 2 P.197–199.
[13] Yaremchuk A., Tukalo M., Grotli M., Cusack S. 2001 A succession of substrate induced conformational changes ensures the amino acid specificity of Thermus thermophilus prolyl-tRNA synthetase: comparison with histidyl-tRNA synthetase J. Mol. Biol 309, N 4:989–1002.
[14] Crepin T., Yaremchuk A., Tukalo M., Cusack S. 2006 Structures of two bacterial prolyl-tRNA synthetases with and without a cis-editing domain Structure 14, N 10:1511–1525.
[15] Oshima T., Imahori K. 1974 Physiochemical properties of deoxyribonucleic acid from an extreme thermophile J. Biochem 75, N 1:179–183.
[16] Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular cloning. A Laboratory manual New York: Cold Spring Harbor Lab. press,.
[17] Marmur J. A. 1961 Procedure for isolation of deoxyribonucleic acid from microorganisms J. Mol. Biol 3, N 2:208–218.
[18] Sanger F., Nicklen S., Coulson A. R. 1977 DNA sequencing with chain-terminating inhibitors Proc. Natl Acad. Sci. USA 74, N 12:5463–5467.
[19] Taupin C. M., Leberman R. 1999 Archaebacterial seryl-tRNA synthetases: adaptation to extreme environments and evolutionary analysis J. Mol. Evol 48, N 4:408–420.
[20] Muto A., Osawa S. 1987 The guanine and cytosine content of genomic DNA and bacterial evolution Proc. Natl Acad. Sci. USA 84, N 1:166–169.
[21] Shiba K., Motegi H., Schimmel P. 1997 Maintaining genetic code through adaptations of tRNA synthetases to taxonomic domains Trends Biochem. Sci 22, N 12:453–457.
[22] Egorova S. P., Krikliviy I. A., Kovalenko O. P., Yaremchuk A. D., Tukalo M. A. 2008 Study on interaction of Thermus thermophilus prolyl-tRNA synthetase with gomologous tRNACGGPro by methods of chemical modification in solution Biopolym. Cell 24, N 5:385–392.