Biopolym. Cell. 2012; 28(3):223-228.
Bioorganic Chemistry
Glycyrrhetinic acid and its derivatives as inhibitors of poly(ADP-ribose)polymerases 1 and 2, apurinic/apyrimidinic endonuclease 1 and DNA polymerase β
1Zakharenko A. L., 2Salomatina O. V., 1Sukhanova M. V., 1Kutuzov M. M., 1Ilina E. S., 1Khodyreva S. N., 3Schreiber V., 2Salakhutdinov N. F., 1Lavrik O. I.
  1. Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
    8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
  2. N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences
    9, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
  3. UMR7242, University of Strasbourg, CNRS, ESBS
    Cedex Illkirch Cedex, France, 67412

Abstract

Aim. For strengthening the efficiency of monofunctional alkylating antineoplastic drugs it is important to lower the capacity of base excision repair (BER) system which corrects the majority of DNA damages caused by these reagents. The objective was to create inhibitors of the key BER enzymes (PARP1, PARP2, DNA polymerase β, and APE1) by the directed modification of glycyrrhetinic acid (GA). Methods. Amides of GA were produced from the GA acetate by formation of the corresponding acyl chloride, amidation with the appropriate amine and subsequent deacylation. Small library of 2-cyano substituted derivatives of GA methyl esters was obtained by the structural modification of GA framework and carboxylic acid group. The inhibitory capacity of the compounds was estimated by comparison of the enzyme activities in specific tests in the presence of compounds versus their absence. Results. None of tested compounds inhibits PARP1 significantly. Unmodified GA and its morpholinic derivative were shown to be weak inhibitors of PARP2. The derivatives of GA containing keto-group in 11 triterpene framework were shown to be moderate inhibitors of pol β. Compound 3, containing 12-oxo-9(11)-en moiety in the ring C, was shown to be a single inhibitor of APE1 among all compounds studied. Conclusions. The class of GA derivatives, selective pol β inhibitors, was found out. The selective inhibitor of APE1 and weak selective inhibitor of PARP2 were also revealed.
Keywords: DNA polymerase β, poly(ADP-ribose)polymerases 1 and 2, apurinic/apyrimidinic endonuclease 1, glycyrrhetinic acid, inhibitor

References

[1] Kaina B., Christmann M., Naumann S., Roos W. P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents DNA Repair (Amst) 2007 6, N 8:1079–1099.
[2] Boehler C., Gauthier L., Yelamos J., Noll A., Schreiber V., Dantzer F. Phenotypic characterization of Parp-1 and Parp-2 deficient mice and cells Methods Mol. Biol 2011 780:313–336.
[3] Reed A. M., Fishel M. L., Kelley M. R. Small-molecule inhibitors of proteins involved in base excision repair potentiate the anti-tumorigenic effect of existing chemotherapeutics and irradiation Future Oncol 2009 5, N 5. P. 713–726.
[4] Ishida S., Sakiya Y., Ishikava T., Awazu S. Pharmacokinetics of glycyrrhetic acid, a major metabolite of glycyrrhizin, in rats Chem. Pharm. Bull. (Tokyo) 1989 37, N 9:2509–2513.
[5] Sakamoto K., Wakabayashi K. Inhibitory effect of glycyrrhetinic acid on testosterone production in rat gonads Endocrinol. Jpn 1988 35, N 2:333–342.
[6] Logashenko E. B., Salomatina O. V., Markov A. V., Korchagina D. V., Salakhutdinov N. F., Tolstikov G. A., Vlassov V. V., Zenkova M. A. Synthesis and pro-apoptotic activity of novel glycyrrhetinic acid derivatives Chembiochem 2011 12, N 5:784–794.
[7] Chauhan D., Li G., Podar K., Hideshima T., Shringarpure R., Catley L., Mitsiades C., Munshi N., Tai Y. T., Suh N., Gribble G. W., Honda T., Schlossman R., Richardson P., Sporn M. B., Anderson K. C. The bortezomib/proteasome inhibitor PS-341 and triterpenoid CDDO-Im induce synergistic anti-multiple myeloma (MM) activity and overcome bortezomib resistance Blood 2004 103, N 8:3158–3166.
[8] Pedersen I. M., Kitada S., Schimmer A., Kim Y., Zapata J. M., Charboneau L., Rassenti L., Andreeff M., Bennett F., Sporn M. B., Liotta L. D., Kipps T. J., Reed J. C. The triterpenoid CDDO induces apoptosis in refractory CLL B cells Blood 2002 100, N 8:2965–2972.
[9] Tolstikov G. A., Baltina L. A., Grankina V. P., Kondratenko R. M., Tolstikova T. G. Solodka: bioraznoobrazie, khimiya, primenenie v meditsine (Licorice: Biodiversity, Chemistry, Application in Medicine) Novosibirsk: Geo, 2007 311 p.
[10] Subba Rao G. S., Kondaiah P., Singh S. K., Ravanan P., Sporn M. B. Chemical modifications of natural triterpenes – glycyrrhetinic and boswellic acids: evaluation of their biological activity Tetrahedron 2008 64, N 51:11541–11548.
[11] Salomatina O. V., Logashenko E. B., Korchagina D. V., Salakhutdinov N. F., Zenkova M. A., Vlasov V. V., Tolstikov G. A. Synthesis and biological activity of novel glycyrrhetic acid derivatives Doklady Chemistry 2010 430, N 2:35–38.
[12] Su X., Lawrence H., Ganeshapillai D., Cruttenden A., Purohit A., Reed M. J., Vicker N., Potter B. V. Novel 18-beta-glycyrrhetinic acid analogues as potent and selective inhibitors of 11beta-hydroxysteroid dehydrogenases Bioorg. Med. Chemistry 2004 12, N 16. –P. 4439–4457.
[13] Sukhanova M. V., Khodyreva S. N., Lavrik O. I. Poly(ADP-ribose) polymerase-1 inhibits strand-displacement synthesis of DNA catalyzed by DNA polymerase beta Biochemistry (Mosc) 2004 69, N 5:558–568.
[14] Drachkova I. A., Petruseva I. O., Safronov I. V., Zakharenko A. L., Shishkin G. V., Lavrik O. I., Khodyreva S. N. Reagents for modification of protein-nucleic acids complexes. II. Site-specific photomodification of DNA-polymerase beta complexes with primers elongated by the dCTP exo-N-substituted arylazido derivatives Bioorg. Khim 2001 27, N 3:197–204.
[15] Lebedeva N. A., Khodyreva S. N., Favre A., Lavrik O. I. AP endonuclease 1 has no biologically significant 3'®5'-exonuclease activity Biochem. Biophys. Res. Commun 2003 300, N 1:182–187.
[16] Ame J. C., Rolli V., Schreiber V., Niedergang C., Apiou F., Decker P., Muller S., Hoger T., Menissier-de Murcia J., de Murcia G. PARP-2, A novel mammalian DNA damage-dependent poly (ADPribose) polymerase J. Biol. Chem 1999 274, N 25:17860– 17868.
[17] Zakharenko A. L., Sukhanova M. V., Khodyreva S. N., Novikov F. N., Stroylov V. S., Nilov D. K., Chilov G. G., Svedas V. K., Lavrik O. I. Improved procedure of the search for poly(ADP-ribose) polymerase-1 potential inhibitors with the use of the molecular docking approach Mol. Biol. (Mosk) 2011 45, N 3:517– 521.
[18] Kutuzov M. M., Ame J. C., Khodyreva S. N., Schreiber V., Lavrik. O. I. Interaction of PARP2 with DNA structures mimicking DNA repair intermediates Biopolym. Cell 2011 27, N 5:383–386.
[19] Schreiber V., Dantzer F., Ame J. C., de Murcia G. Poly(ADP-ribose): novel functions for an old molecule Nat. Rev. Mol. Cell Biol 2006 7, N 7:517–528.
[20] Karlberg T., Hammarstrom M., Schutz P., Svensson L., Schuler H. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888 Biochemistry 2010 49, N 6:1056–1058.
[21] Oliver A. W., Ame J. C., Roe S. M., Good V., de Murcia G., Pearl L. H. Crystal structure of the catalytic fragment of murine poly(ADPribose) polymerase-2 Nucleic Acids Res 2004 32, N 2:456–464.
[22] Podlutsky A. J., Dianova I. I., Podust V. N., Bohr V. A., Dianov G. L. Human DNA polymerase beta initiates DNA synthesis during long-patch repair of reduced AP sites in DNA EMBO J 2001 20, N 6:1477–1482.
[23] Matsumoto Y., Kim K. Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair Science 1995 269, N 5224:699–702.
[24] Sobol R. W., Horton J. K., Kuhn R., Gu H., Singhal R. K., Prasad R., Rajewsky K., Wilson S. H. Requirement of mammalian DNA polymerase-beta in base-excision repair Nature 1996 379, N 6561:183–186.
[25] Gomi A., Shinoda S., Sakai R., Hirai H., Ozawa K., Masuzawa T. Elevated expression of DNA polymerase beta gene in glioma cell lines with acquired resistance to 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-(2-chloroethyl)-3-nitrosourea Biochem. Biophys. Res. Commun 1996 227, N 2:558–563.
[26] Scanlon K. J., Kashani-Sabet M., Miyachi H. Differential gene expression in human cancer cells resistant to cisplatin Cancer Invest 1989 7, N 6:581–587.
[27] Canitrot Y., Hoffmann J. S., Calsou P., Hayakawa H., Salles B. Cazaux C. Nucleotide excision repair DNA synthesis by excess DNA polymerase beta: a potential source of genetic instability in cancer cells FASEB J 2000 14, N 12:1765–1774.
[28] Mizushina Y. Specific inhibitors of mammalian DNA polymerase species Biosci. Biotechnol. Biochem 2009 73, N 6:1239– 1251.
[29] Hu H. Y., Horton J. K., Gryk M. R., Prasad R., Naron J. M., Sun D. A., Hecht S. M., Wilson S. H., Mullen G. P. Identification of small molecule synthetic inhibitors of DNA polymerase beta by NMR chemical shift mapping J. Biol. Chem 2004 279, N 38:39736–39744.
[30] Fishel M. L., Kelley M. R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target Mol. Aspects Med 2007 28, N 3–4:375–395.
[31] Abbotts R., Madhusudan S. Human AP endonuclease 1 (APE1): from mechanistic insights to druggable target in cancer Cancer Treat. Rev 2010 36, N 5:425–435.
[32] Evans A. R., Limp-Foster M., Kelley M. R. Going Ape over Ref1 Mutat. Res 2000 461, N 2:83–108.
[33] Yang S., Irani K., Heffron S. E., Jurnak F., Meyskens F. L. Jr. Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor Mol. Cancer. Ther 2005 4, N 12:1923–1935.
[34] Zou G. M., Maitra A. Small-molecule inhibitor of the AP endonuclease 1/REF-1 E3330 inhibits pancreatic cancer cell growth and migration Mol. Cancer Ther 2008 7, N 7:2012–2021.
[35] Tell G., Wilson D. M. 3rd. Targeting DNA repair proteins for cancer treatment Cell. Mol. Life Sci 2010 67, N 21:3569– 3572.
[36] Simeonov A., Kulkarni A., Dorjsuren D., Jadhav A., Shen M., McNeill D. R., Austin C. P., Wilson D. M. 3rd. Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1 PLoS One 2009 4, N 6 e5740.
[37] Wilson D. M. 3rd, Simeonov V. Small molecule inhibitors of DNA repair nuclease activities Cell. Mol. Life Sci 2010 67, N 21:3621–3631.