Biopolym. Cell. 2012; 28(3):199-201.
Minireviews
Role of poly(ADP-ribose)polymerase 2 in DNA repair
1Khodyreva S. N., 1Kutuzov M. M., 1Lavrik O. I.
  1. Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
    8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090

Abstract

Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for the genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs), which use NAD+ as a substrate, synthesize polymer of (ADP)-ribose (PAR) covalently attached to nuclear proteinsincluding PARP themselves. PARPs constitute a large family of proteins, in which PARP1 isthe most abundant and best-characterized member. In spite of growing body of PARPs’ role in cellular processes, PARP2, the closest homolog of PARP1, still remains poorly characterized at the level of its contribution to different pathways of DNA repair. An overview summarizes in vivo and in vitro data on PARP2 implication in specialized DNA repair processes, base excision repair and double strand break repair.
Keywords: PARP2, poly(ADP-ribosyl)ation, DNA repair

References

[1] Hassa P. O., Haenni S. S. Elser M., Hottiger M. O. Nuclear ADP-ribosylation reactions in mammalian cells: Where are we today and where are we going? Microbiol. Mol. Biol. Rev 2006 70, N 3:789–829.
[2] Ame J. C., Rolli V., Schreiber V., Niedergang C., Apiou F., Decker P., Muller S., Hoger T., Menissier-de Murcia J., de Murcia G. PARP-2, A novel mammalian DNA damage-dependent poly (ADP-ribose)polymerase J. Biol. Chem 1999 274, N 25 P. 17860–17868.
[3] Scharer O. D. Chemistry and biology of DNA repair Angewandte Chemie 2003 42, N 26:2946–2974.
[4] Schreiber V., Ricoul M., Ame J. C., Dantzer F., Meder V. S., Spenlehauer C., Stiegler P., Niedergang C., Sabatier L. PARP-2, structure-function relationship Poly(ADP-ribosyl)ation / Ed. A. Burkle Georgetown: Landes Bioscience, 2004:13–31.
[5] Mladenov E., Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways Mutat. Res 2011 711, N 1–2:61–72.
[6] Isabelle M., Moreel X., Gagne J. P., Rouleau M., Ethier C., Gagne P., Hendzel M. J., Poirier G. G. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry Proteome Sci 2010 8:22.
[7] Troiani S., Lupi R., Perego R., Depaolini S. R., Thieffine S., Bosotti R., Rusconi L. Identification of candidate substrates for poly(ADP-ribose)polymerase-2 (PARP2) in the absence of DNA damage using high-density protein microarrays FEBS J 2011 278, N 19:3676–3687.
[8] Rulten S. L., Fisher A. E. O., Robert I., Zuma M. C., Rouleau M., Ju L., Poirier V., Reina-San-Martin V., Caldecott K. W. PARP-3 and APLF function together to accelerate nonhomologous endjoining Mol. Cell 2011 41, N 1:33–45.
[9] Robert I., Dantzer F., Reina-San-Martin B. Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination J. Exp. Med 2009 206, N 5:1047–1056.
[10] Bryant H. E., Petermann E., Schultz N., Jemth A. S., Loseva O., Issaeva N., Johansson F., Fernandez S., McGlynn P., Helleday T. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination EMBO J 2009 28, N 17:2601–2615.
[11] Kutuzov M. M., Ame J.-C., Khodyreva S. N., Schreiber V., Lavrik O. I. Interaction of PARP2 with DNA structures mimicking DNA repair intermediates Biopolym. Cell 2011 27, N 5 P. 383–386.