Biopolym. Cell. 2012; 28(3):181-189 .
Reviews
A review on microcephaly genes
1Shahid S., 1Irshad S.
  1. Institute of Biochemistry and Biotechnology, University of the Punjab
    Lahore, Pakistan

Abstract

This review aims to summarize the recent findings regarding microcephaly genes. We have discussed the molecular genetics studies of microcephaly genes including a comprehensive appraisal of the seven mapped loci (MCPH1–MCPH7), their corresponding genes and protein products of the genes, their likely role in normal brain development and the details of the mutations reported in these genes.
Keywords: microcephaly, MCPH loci, MCPH gene, mutation, neurogenesis

References

[1] Ashwal S., Michelson D., Plawner L., Dobyns W. B., Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society Practice parameter: evaluation of the child with microcephaly (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society Neurology 2009 73, N 11:887–897.
[2] Kaindl A. M., Passemard S., Kumar P., Kraemerc N., Issa L., Zwirner A., Gerard B., Verloes A., Manig S., Gressens P. Many roads lead to primary autosomal recessive microcephaly Progr. Neurobiol 2010 90, N 3:363–383.
[3] Kim H. T., Lee M. S., Choi J. H., Jung J. Y., Ahn D. G., Yeo S. Y., Choi D. K., Kim C. H. The microcephaly gene aspm is involved in brain development in zebraish Biochem. Biophys. Res. Commun 2011 409, N 4:640–644.
[4] Woods G. C., Bond J., Enard W. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings Am. J. Hum. Genet 2005 76, N 5 P. 717–728.
[5] Wollnik B. A common mechanism for microcephaly Nat. Genet 2010 42, N 11:923–924.
[6] Desir J., Cassart M., David P., Bogaert P. V., Abramowicz M. Primary microcephaly with ASPM mutation shows simplified cortical gyration with antero-posterior gradient preand postnatally Am. J. Med. Genet 2008 146A, N 11:1439–1443.
[7] Thornton G. K., Woods C. G. Primary microcephaly: do all roads lead to Rome? Trends Genet 2009 25, N 11:501–510.
[8] Nicholas A. K., Khurshid M., Desir J., Carvalho O. P., Cox J. J., Thornton G., Kausar R., Ansar M., Ahmad W., Verloes A., Passemard S., Misson J. P., Lindsay S., Gergely F., Dobyns W. B., Roberts E., Abramowicz M., Woods C. G. WDR62 is associated with the spindle pole and is mutated in human microcephaly Nat. Genet 2010 42, N 11:1010–1014.
[9] Sir J. H., Barr A. R., Nicholas A. K., Carvalho O. P., Khurshid M., Sossick A., Reichelt S., D'Santos C. D., Woods C. G., Gergely F. A primary microcephaly protein complex forms a ring around parental centrioles Nat. Genet 2011 43, N 11:1147–1153.
[10] Nicholas A. K., Swanson E. A., Cox J. J., Karbani G., Malik S., Springell K., Hampshire D., Ahmed M., Bond J., Di Benedetto D., Fichera M., Romano C., Dobyns W. B., Woods C. G. The molecular landscape of ASPM mutations in primary microcephaly J. Med. Genet 2009 46, N 4:249–253.
[11] Woods G. C. Human microcephaly Curr. Opin. Neurobiol 2004 14, N 1:112–117.
[12] Cox J., Jackson A. P., Bond J., Woods C. G. What primary microcephaly can tell us about brain growth Trends Mol. Med 2006 12, N 8:358–366.
[13] Montgomery H. S., Mundy N. I. Brain evolution: microcephaly genes weigh in Curr. Biol 2010 20, N 5 R244–246.
[14] Mahmood S., Ahmad W., Hassan M. J. Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum Orphanet. J. Rare Dis 2011 6:39.
[15] Jackson A. P., Eastwood H., Bell S. M., Adu J., Toomes C., Carr I. M., Roberts E., Hampshire D. J., Crow Y. J., Mighell A. J., Karbani G., Jafri H., Rashid Y., Mueller R. F., Markham A. F., Woods C. G. Identification of microcephalin, a protein implicated in determining the size of the human brain Am. J. Hum. Genet 2002 71, N 1:136–142.
[16] Bond J., Roberts E., Springell K., Lizarraga S. B., Scott S., Higgins J., Hampshire D. J., Morrison E. E., Leal G. F., Silva E. O., Costa S. M. R., Baralle D., Raponi M., Karbani G., Rashid Y., Jafri H., Bennett C., Corry P., Walsh C. A., Woods C. G. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size Nat. Genet 2005 37, N 4:353–355.
[17] Shen J., Eyaid W., Mochida G. H., Al-Moayyad F., Bodell A., Woods C. G., Walsh C. A. ASPM mutations identified in patients with primary microcephaly and seizures J. Med. Genet 2005 42, N 9:725–729.
[18] Kumar A., Girimaji S. C., Duvvari M. R., Blanton S. H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly Am. J. Hum. Genet 2009 84, N 2:286–290.
[19] Ponting C., Jackson A. P. Evolution of primary microcephaly genes and the enlargement of primate brains Curr. Opin. Genet. Dev 2005 15, N 3:241–248.
[20] Gruber R., Zhou Z., Sukchev M., Joerss T., Frappart P. O., Wang Z. Q. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway Nat. Cell Biol 2011 13, N 11 P. 1325–1334.
[21] Trimborn M., Bell S. M., Felix C., Rashid Y., Jafri H., Griffiths P. D., Neumann L. M., Krebs A., Reis A., Sperling K., Neitzel H., Jackson A. P. Mutations in microcephalin cause aberrant regulation of chromosome condensation Am. J. Hum. Genet 2004 75, N 2:261–266.
[22] Trimborn M., Richter R., Sternberg N., Gavvovidis I., Schindler D., Jackson A. P., Prott E. C., Sperling K., Gillessen-Kaesbach G., Neitzel H. The first missense alteration in the MCPH1 gene causes autosomal recessive microcephaly with an extremely mild cellular and clinical phenotype Hum. Mutat 2005 26, N 5:496.
[23] Garshasbi M., Motazacker M. M., Kahrizi K., Behjati F., Abedini S. S., Nieh S. E., Firouzabadi S. G., Becker C., Ruschendorf F., Nurnberg P., Tzschach A., Vazifehmand R., Erdogan F., Ullmann R., Lenzner S., Kuss A. W., Ropers H. H., Najmabadi H. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly Hum. Genet 2010 118, N 6:708–715.
[24] Rimol L. M., Agartz I., Djurovic S., Brown A. A., Roddey J. C., Kahler A. K., Mattingsdal M., Athanasiu L., Joyner A. H., Schork N. J., Halgreng E., Sundeth K., Melle I., Dale A. M., Andreassen O. A., Alzheimer's Disease Neuroimaging Initiative. Sex-dependent association of common variants of microcephaly genes with brain structure Proc. Natl Acad. Sci. USA 2010 107, N 1 P. 384–388.
[25] Alderton G. K., Galbiati L., Griffith E., Surinya K. H., Neitze H., Jackson A. P., Jeggo P. A., O'Driscoll M. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling Nat. Cell Biol 2006 8, N 7:725–733.
[26] Farooq M., Baig S., Tommerup N., Kjaer K. W. Craniosynostosis-microcephaly with chromosomal breakage and other abnormalities is caused by a truncating MCPH1 mutation and is allelic to premature chromosomal condensation syndrome and primary autosomal recessive microcephaly type 1 Am. J. Med. Genet 2010 152A, N 2:495–497.
[27] Tang B. L. Molecular genetic determinants of human brain size Biochem. Biophys. Res. Commun 2006 345, N 3 P. 911–916.
[28] Peng G., Yim E. K., Dai H., Jackson A. P., Burgt I., Pan M. R., Hu R., Li K., Lin S. Y. BRIT1/MCPH1 links chromatin remodelling to DNA damage response Nat. Cell Biol 2009 11, N 7 P. 865–872.
[29] Neitzel H., Neumann L. M., Schindler D., Wirges A., Tonnies H., Trimborn M., Krebsova A., Richter R., Sperling K. Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition Am. J. Hum. Genet 2002 70, N 4:1015–1022.
[30] Trimborn M., Schindler D., Neitzel H., Hirano T. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II Cell Cycle 2006 5, N 3:322–326.
[31] Wood J. L., Singh N., Mer G., Chen J. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage J. Biol. Chem 2007 282, N 48:35416– 35423.
[32] Saadi A., Borck G., Boddaert N., Chekkour M. C., Imessaoudene B., Munnich A., Colleaux L., Chaouch M. Compound heterozygous ASPM mutations associated with microcephaly and simplified cortical gyration in a consanguineous Algerian family Eur. J. Med. Genet 2009 52, N 4:180–184.
[33] Bilguvar K., Ozturk A. K., Louvi A., Kwan K. Y., Choi M., Tatli B., Yalnizoglu D., Tuysuz B., Caglayan A. O., Gokben S., Kaymakcalan H., Barak T., Bakircioglu M., Yasuno K., Ho W., Sanders S., Zhu Y., Yilmaz S., Dincer A., Johnson M. H., Bronen R. A., Kocer N., Per H., Mane S., Pamir M. N., Yalcinkaya C., Kumandas S., Topcu M., Ozmen M., Sestan N., Lifton R. P., State M. W., Gunel M. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations Nature 2010 467, N 7312:207–210.
[34] Yu T. W., Mochida G. H., Tischfield D. J., Sgaier S. K., FloresSarnat L., Sergi C. M., Topcu M., McDonald M. T., Barry B. J., Felie J. M., Sunu C., Dobyns W. B., Folkerth R. D., Barkovich A. J., Walsh C. A. Mutations in WDR62, encoding a centrosomeassociated protein, cause microcephaly with simplified gyri and abnormal cortical architecture Nat. Genet 2010 42, N 11 P. 1015–1020.
[35] Hagemann C., Anacker J., Gerngras S., Kuhnel S., Said H. M., Patel R., Kammerer U., Vordermark D., Roosen K., Vince G. H. Expression analysis of the autosomal recessive primary microcephaly genes MCPH1 (microcephalin) and MCPH5 (ASPM, abnormal spindle-like, microcephaly associated) in human malignant gliomas Oncol. Rep 2008 20, N 2:301–308.
[36] Evans P. D., Vallender E. J., Lahn B. T. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENP J Gene 2006 375:75–79.
[37] Hassan M. J., Khurshid M., Azeem Z., John P., Ali G., Chishti M. S., Ahmad W. Previously described sequence variant in CDK5RAP2 gene in a Pakistani family with autosomal recessive primary microcephaly BMC Med. Genet 2007 8:58.
[38] Zhang X., Liu D., Lv S., Wang H., Zhong X., Liu B., Wang B., Liao J., Li J., Pfeifer G. P., Xu X. CDK5RAP2 is required for spindle checkpoint function Cell Cycle 2009 8, N 8 P. 1206–1216.
[39] Guernsey D. L., Jiang H., Hussin J., Arnold M., Bouyakdan K., Perry S., Babineau-Sturk T., Beis J., Dumas N., Evans S. C., Ferguson M., Matsuoka M., Macgillivray C., Nightingale M., Patry L., Rideout A. L., Thomas A., Orr A., Hoffmann I., Michaud J. L., Awadalla P., Meek D. C., Ludman M., Samuels M. E. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4 Am. J. Hum. Genet 2010 87, N 1:40–51.
[40] Blachon S., Gopalakrishnan J., Omori Y., Polyanovsky A., Church A., Nicastro D., Malicki J., Avidor-Reiss T. Drosophila asterless and vertebrate Cep152 Are orthologs essential for centriole duplication Genetics 2008 180, N 4:2081–2094.
[41] Darvish H., Esmaeeli-Nieh S., Monajemi G. B., Mohseni M., Ghasemi-Firouzabadi S., Abedini S. S., Bahman I., Jamali P., Azimi S., Mojahedi F., Dehghan A., Shafeghati Y., Jankhah A., Falah M., Banavandi M. J., Ghani-Kakhi M., Garshasbi M., Rakhshani F., Naghavi A., Tzschach A., Neitzel H., Ropers H. H., Kuss A. W., Behjati F., Kahrizi K., Najmabadi H. A clinical and molecular genetic study of 112 Iranian families with primary microcephaly J. Med. Genet 2010 47, N 12:823– 828.
[42] Bond J., Roberts E., Mochida G. H., Hampshire D. J., Scott S., Askham J. M., Springell K., Mahadevan M., Crow Y. J., Markham A. F., Walsh C. A., Woods C. G. ASPM is a major determinant of cerebral cortical size Nat. Genet 2002 32, N 2 P. 316–320.
[43] Bond J., Scott S., Hampshire D. J., Springell K., Corry P., Abramowicz M. J., Mochida G. H., Hennekam R. C., Maher E. R., Fryns J. P., Alswaid A., Jafri H., Rashid Y., Mubaidin A., Walsh C. A., Roberts E., Woods C. G. Protein-truncating mutations in ASPM cause variable reduction in brain size Am. J. Hum. Genet 2003 73, N 5:1170–1177.
[44] Kumar A., Blanton S. H., Babu M., Markandaya M., Girimaji S. C. Genetic analysis of primary microcephaly in Indian families: novel ASPM mutations Clin. Genet 2004 66, N 4:341–348.
[45] Pichon B., Vankerckhove S., Bourrouillou G., Duprez L., Abramowicz M. J. A translocation breakpoint disrupts the ASPM gene in a patient with primary microcephaly Eur. J. Hum. Genet 2004 12, N 5:419–421.
[46] Saunders R. D., Avides M. C., Howard T., Gonzalez C., Glover D. M. The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle J. Cell Biol 1997 137, N 4 P. 881–890.
[47] Kouprina N., Pavlicek A., Collins N. K., Nakano M., Noskov V. N., Ohzeki J., Mochida G. H., Risinger J. I., Goldsmith P., Gunsior M., Solomon G., Gersch W., Kim J. H., Barrett J. C., Walsh C. A., Jurka J., Masumoto H., Larionov V. The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein Hum. Mol. Genet 2005 14, N 15 P. 2155–2165.
[48] Ponting C. P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene Bioinformatics 2006 22, N 9:1031–1035.
[49] Pulvers J. N., Bryk J., Fish J. L., Wilsch-Brauninger M., Arai Y., Schreier D., Naumann R., Helppi J., Habermann B., Vogt J., Nitsch R., Toth A., Enard W., Paabo S., Huttnera W. B. Mutations in mouse Aspm (abnormal spindle-like microcephaly associated) cause not only microcephaly but also major defects in the germline Proc. Natl Acad. Sci. USA–2010 107, N 38 P. 16595–16600.
[50] Cartegni L., Chew S. L., Krainer A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing Nat. Rev. Genet 2002 3, N 4:285–298.
[51] Fish J. L., Kosodo Y., Enard W., Paabo S., Huttner W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells Proc. Natl Acad. Sci. USA–2006 103, N 27 P. 10438–10443.
[52] Wallerman O., Van Eeghen A., Ten Kate L. P., Wadelius C. Evidence for a second gene for primary microcephaly at MCPH5 on chromosome 1 Hereditas 2003 139, N 1:64–67.
[53] Fujimori A., Yaoi T., Ogi H., Wang B., Suetomi K., Sekine E., Yu D., Kato T., Takahashi S., Okayasu R., Itoh K., Fushiki S. Ionizing radiation downregulates ASPM, a gene responsible for microcephaly in humans Biochem. Biophys. Res. Commun 2008 369, N 3:953–957.
[54] Zhong X., Liu L., Zhao A., Pfeifer G. P., Xu X. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein Cell Cycle 2005 4, N 9:1227–1229.
[55] Riparbelli M. G., Callaini G., Glover D. M., Avides Mdo. C. A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila J. Cell Sci 2002 15, Pt 5:913–922.
[56] Hung L. Y., Chen H. L., Chang C. W., Li B. R., Tang T. K. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly Mol. Biol. Cell 2004 15, N 6:2697–2706.
[57] Chen C. Y., Olayioye M. A., Lindeman G. J., Tang T. K. CPAP interacts with 14-3-3 in a cell cycle-dependent manner Biochem. Biophys. Res. Commun 2006 342, N 4:1203–1210.
[58] Leal G. F., Roberts E., Silva E. O., Costa S. M., Hampshire D. J., Woods C. G. A novel locus for autosomal recessive primary microcephaly (MCPH6) maps to 13q122 J. Med. Genet 2003 40, N 7:540–542.
[59] Gul A., Hassan M. J., Hussain S., Raza S. I., Chishti M. S., Ahmad W. A novel deletion mutation in CENPJ gene in a Pakistani family with autosomal recessive primary microcephaly J. Hum. Genet 2006 51, N 9:760–764.
[60] Al-Dosari M. S., Shaheen R., Colak D., Alkuraya F. S. Novel CENPJ mutation causes Seckel syndrome J. Med. Genet 2010 47, N 6:411–414.
[61] Cho J. H., Chang C. J., Chen C. Y., Tang T. K. Depletion of CPAP by RNAi disrupts centrosome integrity and induces multipolar spindles Biochem. Biophys. Res. Commun 2006 339, N 3:742–747.
[62] Koyanagi M., Hijikata M., Watashi K., Masui O., Shimotohno K. Centrosomal P4.1-associated protein is a new member of transcriptional coactivators for nuclear factor-kappa B J. Biol. Chem 2005 280, N 13:12430–12437.
[63] Karkera J. D., Izraeli S., Roessler E., Dutra A., Kirsch I., Muenke M. The genomic structure, chromosomal localization, and analysis of SIL as a candidate gene for holoprosencephaly Cytogenet. Genome Res 2002 97, N 1–2:62–67.
[64] Tang C. J., Lin S. Y., Hsu W. B., Lin Y. N., Wu C. T., Lin Y. C., Chang C. W., Wu K. S., Tang T. K. The human microcephaly protein STIL interacts with CPAP and is required for procentriole formation EMBO J 2011 30, N 23:4790–4804.
[65] Pfaff K. L., Straub C. T., Chiang K., Bear D. M., Zhou Y., Zon L. I. The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization Mol. Cell Biol 2007 27, N 16:5887–5897.
[66] Campaner S., Kaldis P., Izraeli S., Kirsch I. R. Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint Mol. Cell Biol 2005 25, N 15:6660–6672.
[67] Megraw T. L., Sharkey J. T., Nowakowski R. S. Cdk5rap2 exposes the centrosomal root of microcephaly syndromes Trends Cell Biol 2011 21, N 8:470–480.
[68] Baala L., Briault S., Etchevers H. C., Laumonnier F., Natiq A., Amiel J., Boddaert N., Picard C., Sbiti A., Asermouh A., Attie-Bitach T., Encha-Razavi F., Munnich A., Sefiani A., Lyonnet S. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis Nat. Genet 2007 39, N 4:454–456.
[69] Najm J., Horn D., Wimplinger I., Golden J. A., Chizhikov V. V., Sudi J., Christian S. L., Ullmann R., Kuechler A., Haas C. A., Flubacher A., Charnas L. R., Uyanik G., Frank U., Klopocki E., Dobyns W. B., Kutsche K. Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum Nat. Genet 2008 40, N 9:1065–1067.
[70] Erten-Lyons D., Wilmot B., Anur P., McWeeney S. K., Silbert L., Kramer P., Kaye J. Microcephaly genes and risk of late-onset Alzheimer disease Alzheimer Dis. Assoc. Disord 2011 25, N 3:276–282.
[71] Bruning-Richardson A., Bond J., Alsiary R., Richardson J., Cairns D. A., McCormack L., Hutson R., Burns P., Wilkinson N., Hall G. D., Morrison E. E., Bell S. M. ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival Br. J. Cancer 2011 104, N 10:1602–1610.
[72] Chang Y. F., Imam J. S., Wilkinson M. F. The nonsense-mediated decay RNA surveillance pathway Annu. Rev. Biochem 2007 76:51–74.